此題考查了直線與圓相交的性質(zhì),涉及的知識有:直線的點斜式方程,圓的標準方程,勾股定理,垂徑定理,以及點到直線的距離公式,利用了分類討論的思想,當直線與圓相交時,常常根據(jù)垂徑定理由垂直得中點,進而由弦長的一半,圓的半徑及弦心距構造直角三角形,利用勾股定理來解決問題.
(1)分兩種情況考慮:當直線l的斜率不存在時,根據(jù)直線l過P點,由P的坐標得出直線l的方程為x=1,經(jīng)驗證滿足題意;當直線l的斜率存在時,設出斜率為k,由P及k表示出直線l的方程,根據(jù)圓的方程找出半徑r=2及圓心坐標,再利用點到直線的距離公式表示出圓心到直線l的距離d,進而由弦長的一半,圓的半徑r及弦心距d,利用勾股定理列出關于k的方程,求出方程的解得到k的值,可得出此時直線l的方程,綜上,得到所有滿足題意的直線l的方程.
(2)設
(
),
,則
,由
,得
,代入已知點的軌跡方程中得到結論。