.設(shè)動(dòng)點(diǎn)到點(diǎn)和的距離分別為和, ,且存在常數(shù),使得.(如圖所示)那么點(diǎn)的軌跡是( )
A. 圓 B. 橢圓 C. 雙曲線 D. 拋物線
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
OM |
ON |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年江西卷文)(14分)
設(shè)動(dòng)點(diǎn)到點(diǎn)和的距離分別為和,,
且存在常數(shù),使得.
(1)證明:動(dòng)點(diǎn)的軌跡為雙曲線,并求出的方程;
(2)如圖,過點(diǎn)的直線與雙曲線的右支交于 兩點(diǎn).問:是否存在,使
是以點(diǎn)為直角頂點(diǎn)的等腰直角三角形?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(07年江西卷理)(12分)
設(shè)動(dòng)點(diǎn)到點(diǎn)和的距離分別為和,,且存在常數(shù),使得.
(1)證明:動(dòng)點(diǎn)的軌跡為雙曲線,并求出的方程;
(2)過點(diǎn)作直線雙曲線的右支于兩點(diǎn),試確定的范圍,使,其中點(diǎn)為坐標(biāo)原點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com