.設(shè)動(dòng)點(diǎn)到點(diǎn)的距離分別為, ,且存在常數(shù),使得.(如圖所示)那么點(diǎn)的軌跡是(     )

A. 圓      B. 橢圓      C. 雙曲線      D. 拋物線

 

【答案】

C

【解析】由,得...........(1)

在△APB中,,

由余弦定理得:

(常數(shù)),∴P(x,y)點(diǎn)的軌跡是以A,B為焦點(diǎn)的雙曲線,雙曲線的參數(shù)為:             , 故軌跡.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)動(dòng)點(diǎn)P到點(diǎn)A(-1,0)和B(1,0)的距離分別為d1和d2,∠APB=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2sin2θ=λ.
(1)證明:動(dòng)點(diǎn)P的軌跡C為雙曲線,并求出C的方程;
(2)過點(diǎn)B作直線雙曲線C的右支于M,N兩點(diǎn),試確定λ的范圍,使
OM
ON
=0
,其中點(diǎn)O為坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)C滿足:△ABC的周長為2+2
2
,記動(dòng)點(diǎn)C的軌跡為曲線W.
(Ⅰ)求W的方程;
(Ⅱ)曲線W上是否存在這樣的點(diǎn)P:它到直線x=-1的距離恰好等于它到點(diǎn)B的距離?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(Ⅲ)設(shè)E曲線W上的一動(dòng)點(diǎn),M(0,m),(m>0),求E和M兩點(diǎn)之間的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(07年江西卷文)(14分)

設(shè)動(dòng)點(diǎn)到點(diǎn)的距離分別為,

且存在常數(shù),使得

(1)證明:動(dòng)點(diǎn)的軌跡為雙曲線,并求出的方程;

(2)如圖,過點(diǎn)的直線與雙曲線的右支交于 兩點(diǎn).問:是否存在,使

是以點(diǎn)為直角頂點(diǎn)的等腰直角三角形?若存在,求出的值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(07年江西卷理)(12分)

設(shè)動(dòng)點(diǎn)到點(diǎn)的距離分別為,,且存在常數(shù),使得

(1)證明:動(dòng)點(diǎn)的軌跡為雙曲線,并求出的方程;

(2)過點(diǎn)作直線雙曲線的右支于兩點(diǎn),試確定的范圍,使,其中點(diǎn)為坐標(biāo)原點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案