直線y=x與橢圓=1的交點(diǎn)在x軸上的射影恰好是橢圓的焦點(diǎn),則橢圓C的離心率為( )
A.
B.
C.
D.
【答案】分析:根據(jù)直線y=x與橢圓=1的交點(diǎn)在x軸上的射影恰好是橢圓的焦點(diǎn),可得(c,c)滿足橢圓=1,從而可建立方程,由此可求橢圓C的離心率.
解答:解:由題意,∵直線y=x與橢圓=1的交點(diǎn)在x軸上的射影恰好是橢圓的焦點(diǎn)
∴(c,c)滿足橢圓=1

∴a2c2+(a2-c2)c2=a2(a2-c2
∴e4-3e2+1=0

∵0<e<1

故選A
點(diǎn)評:本題重點(diǎn)考查橢圓的幾何性質(zhì),考查橢圓的標(biāo)準(zhǔn)方程,解題的關(guān)鍵是構(gòu)建離心率方程,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線y=x與橢圓=1(a>b>0)的兩個交點(diǎn)在x軸上的射影恰為橢圓的兩個焦點(diǎn),則橢圓的離心率e等于(    )

A.                    B.          C.            D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省福州市高三第一學(xué)期期末質(zhì)量檢測文科數(shù)學(xué) 題型:選擇題

直線y =x與橢圓=1的交點(diǎn)在x軸上的射影恰好是橢圓的焦點(diǎn),則橢圓C的離心率為

A.    B.     C.     D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

直線y=x與橢圓數(shù)學(xué)公式=1的交點(diǎn)在x軸上的射影恰好是橢圓的焦點(diǎn),則橢圓C的離心率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y =x與橢圓=1的交點(diǎn)在x軸上的射影恰好是橢圓的焦點(diǎn),則橢圓C的離心率為

       A.      B.        C.       D.

查看答案和解析>>

同步練習(xí)冊答案