【題目】已知實(shí)數(shù)a≠0,函數(shù)f(x)=
(1)若a=﹣3,求f(10),f(f(10))的值;
(2)若f(1﹣a)=f(1+a),求a的值.

【答案】
(1)解:若a=﹣3,則f(x)=

所以f(10)=﹣4,f(f(10))=f(﹣4)=﹣11


(2)解:當(dāng)a>0時(shí),1﹣a<1,1+a>1,

所以2(1﹣a)+a=﹣(1+a)﹣2a,解得a=﹣ ,不合,舍去;

當(dāng)a<0時(shí),1﹣a>1,1+a<1,

所以﹣(1﹣a)﹣2a=2(1+a)+a,解得a=﹣ ,符合.

綜上可知,a=﹣


【解析】(1)寫出分段函數(shù),代入計(jì)算,可求f(10),f(f(10))的值;(2)分類討論,利用f(1﹣a)=f(1+a),解方程,即可求a的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x) (xR)

(1)求函數(shù)f(x)的最小值;

(2)已知mR,命題p:關(guān)于x的不等式f(x)m22m2對(duì)任意xR恒成立;q:函數(shù)y(m21)x是增函數(shù).若“pq”為真,“pq”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程.

已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程為

(1)求直線l的傾斜角和曲線C的直角坐標(biāo)方程;

(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|2≤x<7},B={x|3<x≤10},C={x|a﹣5<x<a}.
(1)求A∩B,A∪B;
(2)若非空集合C(A∪B),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a≤0),
(1)若a=﹣1,求函數(shù)的零點(diǎn);
(2)若函數(shù)在區(qū)間(0,1]上恰有一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求區(qū)間A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), 其中R, …為自然對(duì)數(shù)的底數(shù)

)當(dāng)時(shí), 恒成立,求的取值范圍;

)求證: (參考數(shù)據(jù): )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,其中的中點(diǎn).

(1)求證:;

(2)求證:面;

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 是定義在R上的奇函數(shù),且f(1)=2.
(1)求實(shí)數(shù)a,b并寫出函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案