若集合A={a1,a2,a3,a4},集合B={b1,b2,b3,b4,b5},則從A到B的子集建立的映射中,構(gòu)成一一映射的概率是
 
考點(diǎn):古典概型及其概率計(jì)算公式,映射
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:由題意,從A到B的子集建立的映射,等價(jià)于從A到B建立的映射,有54個(gè),構(gòu)成一一映射,有
A
4
5
個(gè),即可得出結(jié)論.
解答: 解:由題意,從A到B的子集建立的映射,等價(jià)于從A到B建立的映射,有54個(gè),構(gòu)成一一映射,有
A
4
5
個(gè),
∴從A到B的子集建立的映射中,構(gòu)成一一映射的概率是
A54
54
=
24
125

故答案為:
24
125
點(diǎn)評(píng):本題考查古典概型及其概率計(jì)算公式,考查學(xué)生的計(jì)算能力,確定從A到B的子集建立的映射,等價(jià)于從A到B建立的映射是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“m=-2”是“直線mx+2y+2=0與直線2x+my+2=0平行”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4|log2x|,0<x<2
1
2
x2-5x+12,x≥2
,若存在實(shí)數(shù)a、b、c、d,滿足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,則abcd的取值范圍是( 。
A、(16,21)
B、(16,24)
C、(17,21)
D、(18,24)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2、A為上頂點(diǎn),AF1交橢圓E于另一點(diǎn)B,且△ABF2的周長(zhǎng)為8,離心率e=
2
2

(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)求過(guò)D(1,0)作橢圓E的兩條互相垂直的弦,M,N分別為兩弦的中點(diǎn),求證:直線MN經(jīng)過(guò)x軸上的定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直三棱柱ABC-A1B1C1的底面三角形ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點(diǎn).
(1)求
BN
的長(zhǎng);
(2)求cos<
BA1
CB1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)的和Sn,點(diǎn)(n,Sn)在函數(shù)f(x)=2x2+4x圖象上,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若函數(shù)g(x)=2 -x,數(shù)列{bn}滿足bn=g(n),記cn=an•bn,求數(shù)列{cn}前n項(xiàng)和Tn;
(3)是否存在實(shí)數(shù)λ,使得當(dāng)x≤λ時(shí),f(x)=-x2+4x-
an
n+1
≤0對(duì)任意n∈N*恒成立?若存在,求出最大的實(shí)數(shù)λ,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y-2與x成正比,且當(dāng)x=1時(shí),y=-6
(1)求y與x之間的函數(shù)關(guān)系式          
(2)若點(diǎn)(a,2)在這個(gè)函數(shù)圖象上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
ax2
-2ax+lnx(a≠0).
(1)討論f(x)的單調(diào)性
(2)若?x0∈[1+
2
2
,2]
,使不等式f(x0)+ln(a+1)>b(a2-1)-(a+1)+2ln2對(duì)任意1<a<2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x),g(x)分別是定義在(-∞,0)∪(0,+∞)上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0.且g(-3)=0.則不等式f(x)g(x)<0的解集是( 。
A、(-3,0)∪(3,+∞)
B、(-3,0)∪(0,3)
C、(-∞,-3)∪(3,+∞)
D、(-∞,-3)∪(0,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案