函數(shù)f(x)=(x+1)|log2x|-1的零點(diǎn)個(gè)數(shù)為(  )
A、1B、2C、3D、4
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x)=0,得|log2x|=
1
x+1
,然后在坐標(biāo)系中分別作出函數(shù)y=log2x,y=
1
x+1
的圖象,利用圖象觀察函數(shù)零點(diǎn)的個(gè)數(shù).
解答: 解:∵函數(shù)的定義域?yàn)閧x|x>0},
∴由f(x)=0,得log2x=
1
x+1
,
在坐標(biāo)系中分別作出函數(shù)y=log2x,y=
1
x+1
的圖象如圖:
由圖象可知兩個(gè)函數(shù)只有2個(gè)交點(diǎn),
∴函數(shù)f(x)=(x+1)|log2x|-1的零點(diǎn)個(gè)數(shù)為2個(gè).
故選:B.
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)的個(gè)數(shù)判斷,利用數(shù)形結(jié)合的思想是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若存在x使2•(x-a)>1成立.則a的取值范圍是( 。
A、(-∞.+∞)
B、(-2,+∞)
C、(0.+∞)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)k∈R,若關(guān)于x方程x2-kx+1=0的二根分別在區(qū)間(0,1)和(1,2)內(nèi),則k的取值范圍為( 。
A、(-∞,-2)∪(2,+∞)
B、(2,
5
2
C、(1,3)
D、(-∞,2)∪(
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
C
1
m
+C
1
n
=19.求
C
2
m
+C
2
n
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
3
-3
9-x2
-x3)dx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二項(xiàng)式(x-
1
2
)
n
(n∈Nn)展開(kāi)式的二項(xiàng)式系數(shù)和與各項(xiàng)系數(shù)和分別為an、bn,則
a1+a2+…+an
b1+b2+…+bn
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)等比數(shù)列{an}的公比為q,其前n項(xiàng)和為Sn,若對(duì)一切n∈N*都有an+1≥2Sn,則q的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,1,0)、B(-1,0,-1)、C(2,1,1),若點(diǎn)P(x,0,z)滿足PA⊥AB,PA⊥AC,試求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
a
3
x3+
b
2
x2+cx,g(x)=mx2+
15
4
x-9.當(dāng)a=3,b=c=0時(shí),若存在過(guò)點(diǎn)(1,0)的直線與曲線y=f(x)和y=g(x)都相切,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案