【題目】為了研究黏蟲孵化的平均溫度(單位: )與孵化天數(shù)之間的關(guān)系,某課外興趣小組通過試驗得到如下6組數(shù)據(jù):

組號

1

2

3

4

5

6

平均溫度

15.3

16.8

17.4

18

19.5

21

孵化天數(shù)

16.7

14.8

13.9

13.5

8.4

6.2

他們分別用兩種模型①,②分別進行擬合,得到相應(yīng)的回歸方程并進行殘差分析,得到如圖所示的殘差圖:

經(jīng)計算得,

(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個模型?(給出判斷即可,不必說明理由)

(2)殘差絕對值大于1的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除,剔除后應(yīng)用最小二乘法建立關(guān)于的線性回歸方程.(精確到0.1)

,.

【答案】(1)應(yīng)該選擇模型①;(2)

【解析】試題分析:(1)第(1)問,由于模型①的殘差帶比較窄,在x軸附近,所以說明擬合效果好,故選模型①. (2)第(2)問,先計算出最小二乘法公式的各個基本量,再代入公式計算,得到關(guān)于的線性回歸方程.

試題解析:

1)應(yīng)該選擇模型①.

2)剔除異常數(shù)據(jù),即組號為4的數(shù)據(jù),剩下數(shù)據(jù)的平均數(shù) (18×618)18;

(12.25×613.5)12

1283.0118×13.51040.01

1964.341821640.34

121.97×18≈47.5,

所以y關(guān)于x的線性回歸方程為: =-2.0x47.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)的部分圖象大致是( )

A. B.

C. D.

【答案】D

【解析】當(dāng)時, ,所以去掉A,B;

因為,所以,因此去掉C,選D.

點睛:有關(guān)函數(shù)圖象識別問題的常見題型及解題思路(1)由解析式確定函數(shù)圖象的判斷技巧:(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;由函數(shù)的奇偶性,判斷圖象的對稱性;由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).(2)由實際情景探究函數(shù)圖象.關(guān)鍵是將問題轉(zhuǎn)化為熟悉的數(shù)學(xué)問題求解,要注意實際問題中的定義域問題.

型】單選題
結(jié)束】
8

【題目】《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱之為“塹堵”,已知某“塹堵”的三視圖如圖所示,則該“塹堵”的外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示,則下列判斷正確的是( 。

A. 函數(shù)的圖象關(guān)于點對稱

B. 函數(shù)的圖象關(guān)于直線對稱

C. 函數(shù)的最小正周期為

D. 當(dāng)時,函數(shù)的圖象與直線圍成的封閉圖形面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點所在平面內(nèi)一點,下列說法正確的是(

A.,則的形狀為等邊三角形

B.,則點是邊的中點

C.任作一條直線,再分別過頂點的垂線,垂足分別為,若恒成立,則點的垂心

D.則點在邊的延長線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的中點.

1)若,求向量與向量的夾角的余弦值;

2)若是線段上任意一點,且,求的最小值;

3)若點內(nèi)一點,且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線,曲線,點,以極點為原點,極軸為軸正半軸建立直角坐標(biāo)系.

(1)求曲線的直角坐標(biāo)方程;

(2)過點的直線于點,交于點,若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線與圓相交于不同的兩點,點是線段的中點。

(1)求直線的方程;

(2)是否存在與直線平行的直線,使得與與圓相交于不同的兩點不經(jīng)過點,且的面積最大?若存在,求出的方程及對應(yīng)的的面積S;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對數(shù)函數(shù)gx=1ogaxa0,a≠1)和指數(shù)函數(shù)fx=axa0a≠1)互為反函數(shù).已知函數(shù)fx=3x,其反函數(shù)為y=gx).

(Ⅰ)若函數(shù)gkx2+2x+1)的定義域為R,求實數(shù)k的取值范圍;

(Ⅱ)若0x1x2|gx1|=|gx2|,求4x1+x2的最小值;

(Ⅲ)定義在I上的函數(shù)Fx),如果滿足:對任意xI,總存在常數(shù)M0,都有-MFx)≤M成立,則稱函數(shù)Fx)是I上的有界函數(shù),其中M為函數(shù)Fx)的上界.若函數(shù)hx=,當(dāng)m≠0時,探求函數(shù)hx)在x[0,1]上是否存在上界M,若存在,求出M的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),關(guān)于函數(shù)的性質(zhì),有以下四個推斷:

的定義域是;

的值域是

是奇函數(shù);

是區(qū)間(0,2)內(nèi)的增函數(shù).

其中推斷正確的個數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案