2.若集合A={x|-2<x<4},B={x|x-m<0}.
(1)若m=3,全集U=A∪B,試求A∩(∁UB);
(2)若A∩B=A,求實(shí)數(shù)m的取值范圍.

分析 (1)根據(jù)集合的基本運(yùn)算求A∪B,即可求(∁UB)∩A;
(2)根據(jù)A∩B=A,建立條件關(guān)系即可求實(shí)數(shù)m的取值范圍.

解答 解 集合A={x|-2<x<4},B={x|x-m<0}.
(1)當(dāng)m=3時(shí),由x-m<0,得x<3,
∴B={x|x<3},
∴U=A∪B={x|x<4},
那么∁UB={x|3≤x<4}.
∴A∩(∁UB)={x|3≤x<4}.
(2)∵A={x|-2<x<4},B={x|x<m},
∵A∩B=A,
∴A⊆B,
故:m≥4.
∴實(shí)數(shù)m的取值范圍是[4,+∞).

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在二項(xiàng)式(x+$\frac{6}{x}$)6的展開(kāi)式中,常數(shù)項(xiàng)是4320.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)$y=x+\frac{a}{x}+1$有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若滿(mǎn)足條件C=60°,AB=$\sqrt{3}$,BC=$\frac{9}{5}$的△ABC有2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.集合P={x|x<2},集合Q={y|y<1},則P與Q的關(guān)系為(  )
A.P⊆QB.Q⊆PC.P=QD.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}{x_i}=80$,$\sum_{i=1}^{10}{y_i}=20$,$\sum_{i=1}^{10}{{x_i}{y_i}}=184$,$\sum_{i=1}^{10}{x_i^2}=720$.
(Ⅰ)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線(xiàn)性回歸方程$\hat y=\hat bx+\hat a$;
(Ⅱ)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(Ⅲ)若該居民區(qū)某家庭月收入為12千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
附:線(xiàn)性回歸方程$\hat y=\hat bx+\hat a$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}y{\;}_i^{\;}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.其中$\overline x$,$\overline y$為樣本平均值,線(xiàn)性回歸方程也可寫(xiě)為$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.解關(guān)于x的不等式:${a^{{x^2}-8}}≥{a^{2x}}({a>0且a≠1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在平面幾何中,有“若△ABC的周長(zhǎng)c,面積為S,則內(nèi)切圓半徑r=$\frac{2S}{c}$”,類(lèi)比上述結(jié)論,在立體幾何中,有“若四面體ABCD的表面積為S,體積為V,則其內(nèi)切球的半徑r=( 。
A.$\frac{3V}{S}$B.$\frac{2V}{S}$C.$\frac{V}{2S}$D.$\frac{V}{3S}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,勘探隊(duì)員朝一座山行進(jìn),在前后兩處觀察山頂?shù)难鼋鞘?0度和45度,兩個(gè)觀察點(diǎn)之間的距離是200m,則此山的高度為100($\sqrt{3}$+1)(用根式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案