【題目】如圖,在三棱錐P—ABC中,平面PAC⊥平面ABC,AB=BC,PA⊥PC.點(diǎn)E,F,O分別為線段PA,PB,AC的中點(diǎn),點(diǎn)G是線段CO的中點(diǎn).
(1)求證:FG∥平面EBO;
(2)求證:PA⊥BE.
【答案】(1)見解析; (2)見解析
【解析】
(1)連接交于,連接,推導(dǎo)出為的重心,從而,由此證得平面;
(2)推導(dǎo)出,從而求得面,進(jìn)而,再求出,由此能證得平面,利用線面垂直的性質(zhì),即可得到.
(1)連接交于,連接,
因?yàn)?/span>分別是的中點(diǎn),所以為的重心,可得,
又因?yàn)?/span>為線段的中點(diǎn),是線段的中點(diǎn),所以,
所以,可得,
因?yàn)?/span>平面平面,所以平面.
(2)因?yàn)?/span>為線段的中點(diǎn),且,所以,
因?yàn)槠矫?/span>平面,平面平面平面,
所以平面,又由平面,所以,
因?yàn)?/span>分別為線段的中點(diǎn),所以,
因?yàn)?/span>,所以,
又平面,所以平面,
因?yàn)?/span>平面,所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線過定點(diǎn)A(1,0).
(Ⅰ)若與圓相切,求的方程;
(Ⅱ)若與圓相交于P,Q兩點(diǎn),線段PQ的中點(diǎn)為M,又與的交點(diǎn)為N,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD為圓錐AO底面的直徑,若,C是圓錐底面所在平面內(nèi)一點(diǎn),,且AC與圓錐底面所成角的正弦值為.
(1)求證:平面平面ACD;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|,關(guān)于x的不等式f(x)<3﹣|2x+1|的解集記為A.
(1)求A;
(2)已知a,b∈A,求證:f(ab)>f(a)﹣f(b).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若恒成立,求實(shí)數(shù)的最大值;
(2)在(1)成立的條件下,正實(shí)數(shù),滿足,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1=3,D是BC的中點(diǎn).
(1) 求直線DC1與平面A1B1D所成角的正弦值;
(2) 求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠每日生產(chǎn)某種產(chǎn)品噸,當(dāng)日生產(chǎn)的產(chǎn)品當(dāng)日銷售完畢,當(dāng)時,每日的銷售額(單位:萬元)與當(dāng)日的產(chǎn)量滿足,當(dāng)日產(chǎn)量超過20噸時,銷售額只能保持日產(chǎn)量20噸時的狀況.已知日產(chǎn)量為2噸時銷售額為4.5萬元,日產(chǎn)量為4噸時銷售額為8萬元.
(1)把每日銷售額表示為日產(chǎn)量的函數(shù);
(2)若每日的生產(chǎn)成本(單位:萬元),當(dāng)日產(chǎn)量為多少噸時,每日的利潤可以達(dá)到最大?并求出最大值.
(注:計(jì)算時取,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
有時可用函數(shù)
描述學(xué)習(xí)某學(xué)科知識的掌握程度,其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實(shí)數(shù)a與學(xué)科知識有關(guān).
(1) 證明:當(dāng)時,掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為,,
.當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)學(xué)校對高三年級文科學(xué)生進(jìn)行了一次自主學(xué)習(xí)習(xí)慣的自評滿意度的調(diào)查,按系統(tǒng)抽樣方法得到了一個自評滿意度(百分制,單位:分)的樣本,如圖分別是該樣本數(shù)據(jù)的莖葉圖和頻率分布直方圖(都有部分缺失).
(1)完善頻率分布直方圖(需寫出計(jì)算過程);
(2)分別根據(jù)莖葉圖和頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù)m1和m2,并指出選用哪一個數(shù)據(jù)來估計(jì)總體的中位數(shù)更合理(需要敘述理由).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com