函數(shù)y=
2x|cos2x|
22x-1
的部分圖象大致為( 。
A、
B、
C、
D、
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:研究函數(shù)的性質(zhì),找出四個選項中與之匹配的選項.
解答:解:f(-x)=
2-x|cos2x|
2-2x-1
=
2x|cos2x|
1-22x
=-f(x)
,即f(x)為奇函數(shù),排除B、D兩項.
又x>0時,f(x)≥0,故C項錯誤.
故選:A.
點評:本題考查了函數(shù)的性質(zhì)與識圖能力,屬中檔題,一般結(jié)合四個選項,分析函數(shù)的性質(zhì)即可選擇相匹配的選項.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x∈R|x+1>0},集合B═{x∈R|(x-1)(x+2)<0},則A∩B=(  )
A、(-1,1)B、(-2,-1)C、(-∞,-2)D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合M={x|x2-2x-3≤0},N={y|y=3x2+1},則M∩(∁UN)=( 。
A、{x|-1≤x<1}B、{x|-1≤x≤1}C、{x|1≤x≤3}D、{x|1<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ln(x+1)的定義域是( 。
A、(-1,0)B、(0,+∞)C、(-1,+∞)D、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,值域為(0,+∞)的函數(shù)是( 。
A、f(x)=2x
B、f(x)=
x
C、f(x)=lgx
D、f(x)=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),y=g(x)的圖象如圖所示,則函數(shù)y=g[|f(x)|]的大致圖象是( 。
A、B、C、D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中既有奇函數(shù),又在區(qū)間[-1,1]上單調(diào)遞增的是( 。
A、f(x)=sin2xB、f(x)=x+tanxC、f(x)=x3-xD、f(x)=2x+2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>2,b>2,且
1
2
log2(a+b)+log2
2
a
=
1
2
log2
1
a+b
+log2
b
2
,則log2(a-2)+log2(b-2)=(  )
A、0
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
kx+1,x≤0
lnx
x
,x>0
,則關(guān)于F(x)=f(f(x))+a的零點個數(shù),判斷正確的是( 。
A、k<0時,若a≥e,則有2個零點
B、k>0時,若a>e,則有4個零點
C、無論k為何值,若-
1
e
<a<0,都有2個零點
D、k>0時,若0≤a<e,則有3個零點

查看答案和解析>>

同步練習(xí)冊答案