【題目】基于移動互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風(fēng)靡全國,帶給人們新的出行體驗.某共享單車運營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進行了統(tǒng)計,結(jié)果如下表:
月份 | 2017.8 | 2017.9 | 2017.10 | 2017.11 | 2017.12 | 2018.1 |
月份代碼x | 1 | 2 | 3 | 4 | 5 | 6 |
市 場占有率y(%) | 11 | 13 | 16 | 15 | 20 | 21 |
(1)請在給出的坐標紙中作出散點圖;
(2)求y關(guān)于x的線性回歸方程,并預(yù)測該公司2018年2月份的市場占有率;
參考公式:回歸直線方程為 其中:,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(-2,0),B(2,0),過點A作直線l與以A,B為焦點的橢圓交于M,N兩點,線段MN的中點到y軸的距離為,且直線l與圓x2+y2=1相切,則該橢圓的標準方程是________,過A點的橢圓的最短弦長為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第23屆冬季奧運會于2018年2月9日至2月25日在韓國平昌舉行,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會對全校教職工在冬季奧運會期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如下頻數(shù)分布表:
(1)若講每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“體育達人”,否則定義為“非體育達人”,請根據(jù)頻數(shù)分布表補全列聯(lián)表:
并判斷能否有90%的把握認為該校教職工是否為“體育達人”與“性別”有關(guān);
(2)在全校“體育達人”中按性別分層抽樣抽取6名,再從這6名“體育達人”中選取2名作冬奧會知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.
附表及公式:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線的極坐標方程為,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的參數(shù)方程為(t為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線的普通方程;
(2)已知點是曲線上一點,,求點到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線的圖象在點處的切線方程為.
(1)求,并證明;
(2)若對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)的圖象向右平移一個單位,所得圖象與函數(shù)的圖象關(guān)于直線對稱;已知偶函數(shù)滿足,當時,;若函數(shù)有五個零點,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),都在處取得最小值.
(1)求的值;
(2)設(shè)函數(shù),的極值點之和落在區(qū)間,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線: 經(jīng)過伸縮變換后得到曲線.以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求出曲線、的參數(shù)方程;
(Ⅱ)若、分別是曲線、上的動點,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com