某港口水的深度(米)是時間 (,單位:時)的函數(shù),記作, 下面是某日水深的數(shù)據(jù):
t/h
0
3
6
9
12
15
18
21
24
y/m
10.0
13.0
9.9
7.0
10.0
13.0
10.1
7.0
10.0
經(jīng)常期觀察,的曲線可以近似的看成函數(shù)的圖象,根據(jù)以上的數(shù)據(jù),可得函數(shù)的近似表達式為                     .
從表可以看出,當t=0時,y=10,且函數(shù)的最小正周期∴b=10,由,由,∴的近似表達式為,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市物價局調(diào)查了某種治療H1N1流感的常規(guī)藥品在2009年每個月的批發(fā)價格和該藥品在藥店的銷售價格,調(diào)查發(fā)現(xiàn),該藥品的批發(fā)價格按月份以12元/盒為中心價隨某一正弦曲線上下波動,且3月份的批發(fā)價格最高為14元/盒,7月份的批發(fā)價格最低為10元/盒。該藥品在藥店的銷售價格按月份以14元/盒為中心價隨另一正弦曲線上下波動,且5月份的銷售價格最高為16元/盒,9月份的銷售價格最低為12元/盒。
(Ⅰ)求該藥品每盒的批發(fā)價格f(x)和銷售價格g(x)關(guān)于月份的函數(shù)解析式;
(Ⅱ)假設(shè)某藥店每月初都購進這種藥品p盒,且當月售完,求該藥店在2009年哪些月份是盈利的?說明你的理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2cosxsin(x+)-sin2x+sinxcosx
(1)求函數(shù)f(x)的最小正周期;
(2)求f(x)的最小值及取得最小值時相應(yīng)的x的值;
(3)若當x∈[,]時,f(x)的反函數(shù)為f1(x),求f-1(1)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知向量,.(1)若,試判斷能否平行?(2)若,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某港口的水深(米)是時間(0≤≤24,單位:小時)的函數(shù),下面是不同時間的水深數(shù)據(jù):

根據(jù)上述數(shù)據(jù)描出的曲線如圖所示,經(jīng)擬合,該曲線可近似地看成正弦函數(shù)的圖像.

(1)試根據(jù)以上數(shù)據(jù),求出的表達式;
(2)一般情況下,船舶航行時,船底離海底的距離不少于4.5米時是安全的,如果某船的吃水深度(船底與水面的距離)為7米,那么該船在什么時間段能夠安全進港?若該船欲當天安全離港,則在港內(nèi)停留的時間最多不能超過多長時間?(忽略進出港所用的時間)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=sin2x+
3
sinxcosx+2cos2x,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(Ⅱ)函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)。
(Ⅰ)當時,求的單調(diào)遞增區(qū)間:
(Ⅱ)當,且時,的值域是,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的最大值為1,最小值為-3,試確定
單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點在第一象限,則在內(nèi)的取值范圍是(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案