【題目】已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求的取值范圍;
(3)在(2)的條件下,設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
【答案】(1)y=x-1(2)(3)
【解析】
試題(Ⅰ)當時,求出切點坐標,然后求出,從而求出的值即為切線的斜率,利用點斜式可求出切線方程;
(Ⅱ)先求導函數(shù),要使在定義域(0,+∞)內(nèi)是增函數(shù),只需在(0,+∞)內(nèi)恒成立,然后將分離,利用基本不等式可求出的取值范圍;
(III)根據(jù)g(x)在[1,e]上的單調(diào)性求出其值域,然后根據(jù)(II)可求出的最大值,要使在[1,e]上至少存在一點x0,使得成立,只需,x∈[1,e],然后建立不等式,解之即可求出的取值范圍.
試題解析:
(1)當a=1時,函數(shù), ∴f(1)=1-1-ln1=0.,
曲線f(x)在點(1,f(1))處的切線的斜率為f'(1)=1+1-1=1.
從而曲線f(x)在點(1,f(1))處的切線方程為y-0=x-1, 即y=x-1.
(2).
要使f(x)在定義域(0,+∞)內(nèi)是增函數(shù),只需f′(x)≥0在(0,+∞)內(nèi)恒成立.
即:ax2-x+a≥0得:恒成立.
由于, ∴, ∴
∴f(x)在(0,+∞)內(nèi)為增函數(shù),實數(shù)a的取值范圍是.
(3)∵在[1,e]上是減函數(shù)
∴x=e時,g(x)min=1,x=1時,g(x)max=e,即g(x)∈[1,e]
f'(x)=令h(x)=ax-x+a
當時,由(II)知f(x)在[1,e]上是增函數(shù),f(1)=0<1
又在[1,e]上是減函數(shù),故只需f(x)max≥g(x)min,x∈[1,e]
而f(x)max=f(e)=,g(x)min=1,即≥1
解得a≥ ∴實數(shù)a的取值范圍是[,+∞)
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,且函數(shù)是偶函數(shù).
(1)求的解析式;.
(2)若不等式在上恒成立,求n的取值范圍;
(3)若函數(shù)恰好有三個零點,求k的值及該函數(shù)的零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由國家公安部提出,國家質(zhì)量監(jiān)督檢驗檢疫總局發(fā)布的《車輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗標準(GB/T19522-2010)》于2011年7月1日正式實施.車輛駕駛?cè)藛T酒飲后或者醉酒后駕車血液中的酒精含量閥值見表.經(jīng)過反復試驗,一般情況下,某人喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”見圖,且圖表示的函數(shù)模型,則該人喝一瓶啤酒后至少經(jīng)過多長時間才可以駕車(時間以整小時計算)?(參考數(shù)據(jù):,)
駕駛行為類型 | 閥值 |
飲酒后駕車 | , |
醉酒后駕車 |
車輛駕車人員血液酒精含量閥值
喝1瓶啤酒的情況
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:對棱相等的四面體為等腰四面體.
(1)若等腰四面體的每條棱長都是,求該等腰四面體的體積;
(2)求證:等腰四面體每個面的三角形均為銳角三角形:
(3)設(shè)等腰四面體的三個側(cè)面與底面所成的角分別為,請判斷是否為定值?如果是定值,請求出該定值;如果不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】樹立和踐行“綠水青山就是金山銀山,堅持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進展情況的調(diào)查,大量的統(tǒng)計數(shù)據(jù)表明,參與調(diào)查者中關(guān)注此問題的約占80%.現(xiàn)從參與調(diào)查的人群中隨機選出人,并將這人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示:
(1)求的值;
(2)求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);
(3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取人,再從這人中隨機抽取人進行問卷調(diào)查,求第2組中抽到人的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】湖北省2019年公布了新的高考方案,實行“3+1+2”模式.某學生按方案要求任意選擇,則該生選擇考歷史和化學的概率為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖正方體的棱長為1,線段上有兩個動點且,則下列結(jié)論錯誤的是( )
A. 與所成角為
B. 三棱錐的體積為定值
C. 平面
D. 二面角是定值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正數(shù)數(shù)列的前項和為,,且.
(1)求的通項公式.
(2)對任意,將數(shù)列中落在區(qū)間內(nèi)的項的項數(shù)記為,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)共有員工10000人,下圖是通過隨機抽樣得到的該企業(yè)部分員工年收入(單位:萬元)頻率分布直方圖.
(1)根據(jù)頻率分布直方圖計算樣本的平均數(shù).并以此估算該企業(yè)全體員工中年收入不低于樣本平均數(shù)的人數(shù)(同一組中的數(shù)據(jù)以這數(shù)據(jù)所在區(qū)間中點的值作代表);
(2)若抽樣調(diào)查中收入在萬元員工有2人,求在收入在萬元的員工中任取3人,恰有2位員工收入在萬元的概率;
(3)若抽樣調(diào)查的樣本容量是400人,在這400人中:年收入在萬元的員工中具有大學及大學以上學歷的有,年收入在萬元的員工中不具有大學及大學以上學歷的有,將具有大學及大學以上學歷和不具有大學及大學以上學歷的員工人數(shù)填入下面的列聯(lián)表,并判斷能否有的把握認為具有大學及大學以上學歷和不具有大學及大學以上學歷的員工收入有差異?
具有大學及大學以上學歷 | 不具有大學及大學以上學歷 | 合計 | |
萬元員工 | |||
萬元員工 | |||
合計 |
附:;
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com