【題目】在數(shù)列{an}中,已知,且2an+1=an+1nN*).

1)求證:數(shù)列{an-1}是等比數(shù)列;

2)若bn=nan,求數(shù)列{bn}的前n項和Tn

【答案】1)見解析;(2) 2-

【解析】

1)由已知可得,2an+1-1=an-1,從而可證明數(shù)列{an-1}是等比數(shù)列;

2)由(1)可求an,進(jìn)而可求bn,然后利用分組求和,結(jié)合等差數(shù)列的求和公式及錯位相減求和方法即可求解.

解:(12an+1=an+1nN*).

2an+1-1=an-1,

,

a1-1=an-1≠0

=,

數(shù)列{an-1}是以為首項,為公比的等比數(shù)列

2)由(1)可得:an-1=

an=

bn=nan=n,

Tn=+1+2++n),

An=,

=+n-1+n

兩式相減可得,=,

==1-

An=2-2×-n=2-

Tn=2-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(,,)的部分圖像如圖所示.

1)求函數(shù)的解析式及圖像的對稱軸方程;

2)把函數(shù)圖像上點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍(縱坐標(biāo)不變),再向左平移個單位,得到函數(shù)的圖象,求關(guān)于x的方程時所有的實數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A4,0)、B1,0),動點(diǎn)M滿足|AM|=2|BM|

1)求動點(diǎn)M的軌跡C的方程;

2)直線lx+y=4,點(diǎn)Nl,過N作軌跡C的切線,切點(diǎn)為T,求NT取最小時的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)絡(luò)外賣也開始成為不少人日常生活中不可或缺的一部分.某市一調(diào)查機(jī)構(gòu)針對該市市場占有率最高的甲、乙兩家網(wǎng)絡(luò)外賣企業(yè)(以下簡稱外賣甲,外賣乙)的經(jīng)營情況進(jìn)行了調(diào)查,調(diào)查結(jié)果如表:

1日

2日

3日

4日

5日

外賣甲日接單(百單)

5

2

9

8

11

外賣乙日接單(百單)

2.2

2.3

10

5

15

(1)據(jù)統(tǒng)計表明,之間具有線性相關(guān)關(guān)系.

(。┱堄孟嚓P(guān)系數(shù)加以說明:(若,則可認(rèn)為有較強(qiáng)的線性相關(guān)關(guān)系(值精確到0.001))

(ⅱ)經(jīng)計算求得之間的回歸方程為.假定每單外賣業(yè)務(wù)企業(yè)平均能獲純利潤3元,試預(yù)測當(dāng)外賣乙日接單量不低于2500單時,外賣甲所獲取的日純利潤的大致范圍:(值精確到0.01)

(2)試根據(jù)表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經(jīng)營狀況.

相關(guān)公式:相關(guān)系數(shù),

參考數(shù)據(jù):

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)現(xiàn)有一個直角梯形水產(chǎn)養(yǎng)殖區(qū)ABCD,ABC=90°,ABCD,AB=800mBC=1600m,CD=4000m,在點(diǎn)P處有一燈塔(如圖),且點(diǎn)PBC,CD的距離都是1200m,現(xiàn)擬將養(yǎng)殖區(qū)ACD分成兩塊,經(jīng)過燈塔P增加一道分隔網(wǎng)EF,在AEF內(nèi)試驗養(yǎng)殖一種新的水產(chǎn)品,當(dāng)AEF的面積最小時,對原有水產(chǎn)品養(yǎng)殖的影響最。O(shè)AE=d

1)若PEF的中點(diǎn),求d的值;

2)求對原有水產(chǎn)品養(yǎng)殖的影響最小時的d的值,并求AEF面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓Cab0)的左、右焦點(diǎn)分別為F1,F2P為橢圓C上一點(diǎn),且PF2垂直于x軸,連結(jié)PF1并延長交橢圓于另一點(diǎn)Q,設(shè)

1)若點(diǎn)P的坐標(biāo)為(2,3),求橢圓C的方程及λ的值;

2)若4≤λ≤5,求橢圓C的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 中,橢圓 的中心為坐標(biāo)原點(diǎn),左焦點(diǎn)為F1(﹣1,0),離心率

(1)求橢圓G 的標(biāo)準(zhǔn)方程;

(2)已知直線 與橢圓 交于 兩點(diǎn),直線 與橢圓 交于 兩點(diǎn),且 ,如圖所示.

①證明: ;

②求四邊形 的面積 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點(diǎn)滿足: .

1)求動點(diǎn)的軌跡的方程;

2)設(shè)過點(diǎn)的直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為(點(diǎn)與點(diǎn)不重合),證明:直線恒過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中是自然對數(shù)的底數(shù)

(1)若曲線處的切線方程為求實數(shù)的值;

(2)① 時,函數(shù)既有極大值,又有極小值,求實數(shù)的取值范圍;

,對一切正實數(shù)恒成立,求實數(shù)的最大值(用表示)

查看答案和解析>>

同步練習(xí)冊答案