函數(shù)f(x)=
.
3
3
cosxsinx
.
的值域是
 
分析:先根據(jù)二階行列式公式進行化簡,然后利用兩角差公式對函數(shù)解析式化簡整理,進而根據(jù)正弦函數(shù)的性質(zhì)求得函數(shù)的最大和最小值,即可求出值域.
解答:解:f(x)=
.
3
3
cosxsinx
.
=3sinx-
3
cosx
=2
3
sin(x-
π
6

∵-1≤sin(x-
π
6
)≤1
∴-2
3
≤y≤2
3

故答案為:[-2
3
,2
3
]
點評:本題主要考查了正弦函數(shù)的定義域和值域,解題的關(guān)鍵是對函數(shù)解析式的化簡,以及對正弦函數(shù)的基礎(chǔ)知識的熟練記憶.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①若函數(shù)f(x)=a(x3-x)在區(qū)間(-
3
3
,
3
3
)為減函數(shù),則a>0

②函數(shù)f(x)=lg(ax+1)的定義域是{x|x>-
1
a
}
;
③當x>0且x≠1時,有l(wèi)nx+
1
lnx
≥2

④若M是圓(x-5)2+(y+2)2=34上的任意一點,則點M關(guān)于直線y=ax-5a-2的對稱點M′也在該圓上.
所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①已知函數(shù)y=sin2x+acos2x的圖象關(guān)于直線x=-
π
3
對稱,則a的值為
3
3
;
②函數(shù)y=lgsin(
π
4
-2x)
的單調(diào)增區(qū)間是[kπ-
π
8
, kπ+
8
)  (k∈Z)
;
③設(shè)p=sin15°+cos15°,q=sin16°+cos16°,r=p•q,則p、q、r的大小關(guān)系是p<q<r;
④要得到函數(shù)y=cos2x-sin2x的圖象,需將函數(shù)y=
2
cos2x
的圖象向左平移
π
8
個單位;
⑤函數(shù)f(x)=sin(2x+θ)-
3
cos(2x+θ)
是偶函數(shù)且在[0,
π
4
]
上是減函數(shù)的θ的一個可能值是
6
.其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①函數(shù)f(x)=
x-1
x+1
與g(x)=x的圖象沒有公共點;
②若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
③若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3

④定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函.
則其中正確的個數(shù)為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos(ωx-
π
5
)
最小正周期為
3
,其中ω>0,則ω=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•浦東新區(qū)一模)設(shè)函數(shù)f(x)=
sinx0≤x≤π
cosx-π<x<0
.方程f(x)=
1
3
解的個數(shù)為
3
3

查看答案和解析>>

同步練習(xí)冊答案