已知是定義在 [ – 1,1 ] 上的奇函數(shù),且,若m,時(shí)有
(1)用定義證明在 [ – 1,1 ] 上是增函數(shù);
(2)若成立,求a的取值范圍.
(1)見(jiàn)解析(2)
(1) 得  ∴
由題意得:
為奇函數(shù)

   ∴
在 [ – 1,1 ] 上是增函數(shù)
(2)
 解得
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)是定義在上的單調(diào)奇函數(shù), 且.
(Ⅰ)求證函數(shù)上的單調(diào)減函數(shù);
(Ⅱ) 解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)則其零點(diǎn)所在的區(qū)間為                 (   )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義,已知實(shí)數(shù)x,y滿(mǎn)足|x|≤2,|y|≤2,
設(shè) 則z的取值范圍是                                                         (  )
A.[-7,10]B.[-6,10]C.[-6,8]D.[-7,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某市的出租車(chē)的價(jià)格規(guī)定:起步費(fèi)11元,可行3千米;3千米后按每千米2.1元計(jì)價(jià),可再行7千米;以后每千米都按3.15元計(jì)價(jià),設(shè)每一次乘車(chē)的車(chē)費(fèi)由行車(chē)?yán)锍檀_定.
(1)請(qǐng)寫(xiě)出一次乘車(chē)的車(chē)費(fèi)y元與行車(chē)的里程x千米的函數(shù)關(guān)系;
(2)計(jì)算如果一次乘車(chē)費(fèi)為32元,那么汽車(chē)行程為多少千米?
(3)請(qǐng)問(wèn)當(dāng)行程為28千米時(shí),請(qǐng)你設(shè)計(jì)一種乘車(chē)方案,使總費(fèi)用最省.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

冪指函數(shù)在求導(dǎo)時(shí),可運(yùn)用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得,兩邊同時(shí)求導(dǎo)得,于是.運(yùn)用此方法可以探求的一個(gè)單調(diào)遞增區(qū)間是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),函數(shù)的圖像與函數(shù)
的圖像關(guān)于直線(xiàn)對(duì)稱(chēng).
(1)求函數(shù)的解析式;
(2)若函數(shù)在區(qū)間上的值域?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823133803091845.gif" style="vertical-align:middle;" />,
求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),試用列舉法表示集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)滿(mǎn)足對(duì)任意的都有成立,則      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù) 的圖象在處的切線(xiàn)互相平行.
(Ⅰ) 求的值;
(Ⅱ)設(shè),當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案