精英家教網 > 高中數學 > 題目詳情

【題目】在一段時間內,分5次測得某種商品的價格x(萬元)和需求量y(t)之間的一組數據為:

1

2

3

4

5

價格x

1.4

1.6

1.8

2

2.2

需求量y

12

10

7

5

3

已知

(1)畫出散點圖;

(2)求出yx的線性回歸方程;

(3)如價格定為1.9萬元,預測需求量大約是多少?(精確到0.01 t).

參考公式: .

【答案】(1)見解析;(2)y=28.1-11.5x;(3)6.25t.

【解析】分析:(1)先描出各點即得散點圖.(2)利用最小二乘法求出yx的線性回歸方程.(3)令x=1.9即得需求量.

詳解:(1)散點圖如圖所示:

(2)因為×9=1.8,×37=7.4,

所以

a=- b=7.4+11.5×1.8=28.1,

yx的線性回歸方程為 y=28.1-11.5x.

(3)當x=1.9時,y =28.1-11.5×1.9=6.25(t),

所以如價格定為1.9萬元,預測需求量大約是6.25(t).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對于序列A0:a0 , a1 , a2 , …,an(n∈N*),實施變換T得序列A1:a1+a2 , a2+a3 , …,an1+an , 記作A1=T(A0):對A1繼續(xù)實施變換T得序列A2=T(A1)=T(T(A0)),記作A2=T2(A0);…;An1=Tn1(A0).最后得到的序列An1只有一個數,記作S(A0). (Ⅰ)若序列A0為1,2,3,求S(A0);
(Ⅱ)若序列A0為1,2,…,n,求S(A0);
(Ⅲ)若序列A和B完全一樣,則稱序列A與B相等,記作A=B,若序列B為序列A0:1,2,…,n的一個排列,請問:B=A0是S(B)=S(A0)的什么條件?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若定義域為R的偶函數y=f(x)滿足f(x+2)=﹣f(x),且當x∈[0,2]時,f(x)=2﹣x2 , 則方程f(x)=sin|x|在[﹣3π,3π]內根的個數是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列中,公差,其前項和為,且滿足:

(Ⅰ)求數列的通項公式;

(Ⅱ)通過公式構造一個新的數列.若也是等差數列,求非零常數;

(Ⅲ)求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數,關于x的方程3個不同的實數根,則(  )

A. b<﹣2c0B. b>﹣2c0C. b=﹣2c0D. b>﹣2c0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知M( ,0),N(2,0),曲線C上的任意一點P滿足: = | |.
(Ⅰ)求曲線C的方程;
(Ⅱ)設曲線C與x軸的交點分別為A、B,過N的任意直線(直線與x軸不重合)與曲線C交于R、Q兩點,直線AR與BQ交于點S.問:點S是否在同一直線上?若是,請求出這條直線的方程;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列判斷錯誤的是

A. 若隨機變量服從正態(tài)分布,;

B. 組數據的散點都在上,則相關系數;

C. 若隨機變量服從二項分布, ;

D. 的充分不必要條件;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)=ax2+bx+ca≠0)滿足f0)=0,對于任意xR,都有fxx,且,令gx)=fx)﹣x1|λ0).

1)求函數fx)的表達式;

2)求函數gx)的單調區(qū)間;

3)當λ2時,判斷函數gx)在區(qū)間(0,1)上的零點個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】公元263年左右,我國數學家劉徽發(fā)現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出n的值為( ) (參考數據: ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)

A.12
B.24
C.36
D.48

查看答案和解析>>

同步練習冊答案