【題目】設(shè)函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,證明恒成立.

【答案】(1)當(dāng)時,在區(qū)間上單調(diào)遞增;當(dāng)時,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;(2)證明見詳解.

【解析】

1)求導(dǎo),對參數(shù)進(jìn)行分類討論,進(jìn)而求得函數(shù)的單調(diào)區(qū)間;

2)將恒成立問題,轉(zhuǎn)化兩個函數(shù)最值之間的問題,進(jìn)而求解.

1)由題意得,.

①當(dāng)時,,故函數(shù)在區(qū)間上單調(diào)遞增;

②當(dāng)時,在區(qū)間上,,在區(qū)間上,,

故函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

2)證明:

要證,只需證.

,故只需證即可.

設(shè),則,

在區(qū)間上,,在區(qū)間上,,

故函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

所以.

設(shè),則,

在區(qū)間上,,在區(qū)間上,,

故函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

所以.

,所以.

又因為,所以,

所以,

故在上,

綜上,恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形中,,的中點,的中點,以為折痕將向上折起,使點折到點,且.

1)求證:

2)求與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行六面體ABCDA1B1C1D1中,所有棱長均為2,∠AA1D1=∠AA1B1=60°,∠D1A1B1=90°.

1)求證:A1CB1D1;

2)求對角線AC1的長;

3)求二面角C1AB1D1的平面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國詩詞大會》是央視首檔全民參與的詩詞節(jié)目,節(jié)目以賞中華詩詞,尋文化基因,品生活之美為宗旨.每一期的比賽包含以下環(huán)節(jié):個人追逐賽、攻擂資格爭奪賽擂主爭霸賽,其中擂主爭霸賽攻擂資格爭奪賽獲勝者與上一場擂主進(jìn)行比拼.“擂主爭霸賽共有九道搶答題,搶到并答對者得一分,答錯則對方得一分,率先獲得五分者即為該場擂主.在《中國詩詞大會》的某一期節(jié)目中,若進(jìn)行擂主爭霸賽的甲乙兩位選手每道搶答題得到一分的概率都是為0.5,則搶答完七道題后甲成為擂主的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,(其中, 為自然對數(shù)的底數(shù), ……).

(1)令,若對任意的恒成立,求實數(shù)的值;

(2)在(1)的條件下,設(shè)為整數(shù),且對于任意正整數(shù), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若關(guān)于的不等式恒成立,求的取值范圍;

2)當(dāng)時,求證:;

3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)).以坐標(biāo)原點O為極,z軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

()求曲線C的普通方程和直線的直角坐標(biāo)方程;

()設(shè)點.若直線與曲線C相交于A,B兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)

討論的單調(diào)區(qū)間;

當(dāng)時,上的最小值為,求上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某單位甲、乙、丙三個部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時間的調(diào)查.

1)應(yīng)從甲、乙、丙三個部門的員工中分別抽取多少人?

2)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.用X表示抽取的3人中睡眠充足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案