18.若函數(shù)$f(x)=\frac{x}{1+|x|}-m$有零點,則實數(shù)m的取值范圍是  (-1,1).

分析 求出表達式$\frac{x}{1+|x|}$的值域范圍,然后推出m的范圍.

解答 解:函數(shù)$f(x)=\frac{x}{1+|x|}-m$有零點,可知y=$\frac{x}{1+|x|}$與y=m有交點,
y=$\frac{x}{1+|x|}$是奇函數(shù),x≥0時,0≤$\frac{x}{1+x}$<1,
所以m∈(-1,1).
給答案為:(-1,1).

點評 本題考查函數(shù)的最值的求法,函數(shù)的零點與方程根的關(guān)系,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.設函數(shù)f(x)=4x2+ax+2,不等式f(x)<c的解集為(-1,2).
(1)求a的值;
(2)解不等式$\frac{4x+m}{{f(x)-4{x^2}}}>0$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某工廠在2016年的“減員增效”中對部分人員實行分流,規(guī)定分流人員一年可以到原單位領(lǐng)取工資的100%,從第二年初,以后每年只能在原單位按上一年的$\frac{2}{3}$領(lǐng)取工資,該廠根據(jù)分流人員的技術(shù)特長,計劃創(chuàng)辦新的經(jīng)濟實體,該經(jīng)濟實體預計第一年屬投資階段,第二年每人可獲得b元收入,從第三年起每人每年的收入可在上一年的基礎上遞增50%,如果某人分流后工資的收入每年a元,分流后進入新經(jīng)濟實體,第n年的收入為an元;
(1)求{an}的通項公式;
(2)當$b≥\frac{3a}{8}$時,是否一定可以保證這個人分流一年后的收入永遠超過分流前的年收入?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(6,x),且$\overrightarrow{a}$⊥$\overrightarrow$,則x的值為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\frac{1}{2}$(sinx+cosx)-$\frac{1}{2}$|sinx-cosx|,則f(x)的值域是(  )
A.[-1,$\frac{\sqrt{2}}{2}$]B.[-1,1]C.[-$\frac{\sqrt{2}}{2}$,1]D.[-1,-$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.對任意的非零實數(shù)a,b,若$a?b=\left\{\begin{array}{l}\frac{b-1}{a},a<b\\ \frac{a+1},a≥b\end{array}\right.$則lg10000$?{(\frac{1}{2})^{-2}}$=(  )
A.$\frac{1}{4}$B.$\frac{5}{4}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.從2007名學生中選取50名參加全國數(shù)學聯(lián)賽,若采用下面的方法選取:先用簡單隨機抽樣從2007人中剔除7人,剩下的2000人再按系統(tǒng)抽樣的方法抽取,則每人入選的可能性( 。
A.都相等,且為$\frac{50}{2007}$B.不全相等
C.均不相等D.都相等,且為$\frac{1}{40}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.復數(shù)z=$\frac{6+8i}{(4+3i)(1+i)}$,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.(log23)×(log32)=1.

查看答案和解析>>

同步練習冊答案