9.某工廠在2016年的“減員增效”中對(duì)部分人員實(shí)行分流,規(guī)定分流人員一年可以到原單位領(lǐng)取工資的100%,從第二年初,以后每年只能在原單位按上一年的$\frac{2}{3}$領(lǐng)取工資,該廠根據(jù)分流人員的技術(shù)特長(zhǎng),計(jì)劃創(chuàng)辦新的經(jīng)濟(jì)實(shí)體,該經(jīng)濟(jì)實(shí)體預(yù)計(jì)第一年屬投資階段,第二年每人可獲得b元收入,從第三年起每人每年的收入可在上一年的基礎(chǔ)上遞增50%,如果某人分流后工資的收入每年a元,分流后進(jìn)入新經(jīng)濟(jì)實(shí)體,第n年的收入為an元;
(1)求{an}的通項(xiàng)公式;
(2)當(dāng)$b≥\frac{3a}{8}$時(shí),是否一定可以保證這個(gè)人分流一年后的收入永遠(yuǎn)超過分流前的年收入?

分析 (1)由題意可得:n=1時(shí),a1=a.n≥2時(shí),an=a×$(\frac{2}{3})^{n-1}$+$b×(\frac{3}{2})^{n-2}$.即可得出an
(2)$b≥\frac{3a}{8}$時(shí),n≥2時(shí),an=a×$(\frac{2}{3})^{n-1}$+$b×(\frac{3}{2})^{n-2}$≥a×$(\frac{2}{3})^{n-1}$+$\frac{3a}{8}$$(\frac{3}{2})^{n-2}$,再利用基本不等式的性質(zhì)即可得出結(jié)論.

解答 解:(1)由題意可得:n=1時(shí),a1=a.n≥2時(shí),an=a×$(\frac{2}{3})^{n-1}$+$b×(\frac{3}{2})^{n-2}$.
因此an=$\left\{\begin{array}{l}{a,n=1}\\{a×(\frac{2}{3})^{n-1}+b×(\frac{3}{2})^{n-2},n≥2}\end{array}\right.$.
(2)$b≥\frac{3a}{8}$時(shí),n≥2時(shí),an=a×$(\frac{2}{3})^{n-1}$+$b×(\frac{3}{2})^{n-2}$≥a×$(\frac{2}{3})^{n-1}$+$\frac{3a}{8}$$(\frac{3}{2})^{n-2}$≥a×2$\sqrt{(\frac{2}{3})^{n-1}×\frac{3}{8}(\frac{3}{2})^{n-2}}$=a,
因此當(dāng)$b≥\frac{3a}{8}$時(shí),一定可以保證這個(gè)人分流一年后的收入永遠(yuǎn)超過分流前的年收入.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)滿足$f(x)=\frac{1}{3}{x^3}-f'(1)•{x^2}-x$,則f'(1)的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}滿足a1a2a3…an=2${\;}^{{n}^{2}}$(n∈N*),且對(duì)任意n∈N*都有$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<t,則t的取值范圍為( 。
A.($\frac{1}{3}$,+∞)B.[$\frac{1}{3}$,+∞)C.($\frac{2}{3}$,+∞)D.[$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.空間有10個(gè)點(diǎn),其中有5個(gè)交點(diǎn)共面(除此之外再無4點(diǎn)共面),以每4個(gè)點(diǎn)為頂點(diǎn)作一個(gè)四面體,一共可作205個(gè)四面體(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.-1與5的等差中項(xiàng)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=x+2,x∈(1,2],則f(x)的值域?yàn)椋ā 。?table class="qanwser">A.(2,4]B.(3,4]C.(3,5]D.(2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如果a1-2x>ax+7(a>0,且a≠1),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)$f(x)=\frac{x}{1+|x|}-m$有零點(diǎn),則實(shí)數(shù)m的取值范圍是  (-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lg(x2-mx-m).
(1)若m=1,求函數(shù)f(x)的定義域;
(2)若f(x)在(1,+∞)上是增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案