已知等差數(shù)列{an}的公差為2,項數(shù)是偶數(shù),所有奇數(shù)項之和為l5,所有偶數(shù)項之和為25,則這個數(shù)列的項數(shù)為( )
A.10
B.20
C.30
D.40
【答案】分析:設(shè)這個數(shù)列的項數(shù)是2k,則奇數(shù)項之和=a1+a3+…+a2k-1=15,偶數(shù)項之和=a2+a4+…+a2k=25,故(a2-a1)+(a4-a3)+…+(a2k-a2k-1)=25-15=10,由等差數(shù)列{a2}的公差為2,能求出這個數(shù)列的項數(shù).
解答:解:設(shè)這個數(shù)列的項數(shù)是2k,
則奇數(shù)項之和=a1+a3+…+a2k-1=15,
偶數(shù)項之和=a2+a4+…+a2k=25,
∴(a2-a1)+(a4-a3)+…+(a2k-a2k-1)=25-15=10,
∵等差數(shù)列{a2}的公差為2,
∴2k=10,
∴這個數(shù)列的項數(shù)是10.
故選A.
點評:本題考查等差數(shù)列的性質(zhì)和應用,是基礎(chǔ)題.解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案