【題目】定義在[﹣2,2]上的偶函數(shù)g(x),當(dāng)x≥0時(shí),g(x)單調(diào)遞減,若g(1﹣m)﹣g(m)<0,則實(shí)數(shù)m的取值范圍是

【答案】
【解析】解:因?yàn)楹瘮?shù)是偶函數(shù),∴g(1﹣m)=g(|1﹣m|),g(m)=g(|m|),
又g(x)在x≥0上單調(diào)遞減,故函數(shù)在x≤0上是增函數(shù),
∵g(1﹣m)<g(m),
,得
實(shí)數(shù)m的取值范圍是
所以答案是:﹣1≤m<
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)單調(diào)性的性質(zhì)和函數(shù)奇偶性的性質(zhì),掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集;在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+
(1)求證:f(x)是偶函數(shù);
(2)判斷函數(shù)f(x)在(0, )和( ,+∞)上的單調(diào)性并用定義法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中, , ,外接球的球心為,點(diǎn)是側(cè)棱上的一個(gè)動(dòng)點(diǎn).有下列判斷:

① 直線(xiàn)與直線(xiàn)是異面直線(xiàn);② 一定不垂直

③ 三棱錐的體積為定值; ④的最小值為.

其中正確的個(gè)數(shù)是

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車(chē)是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車(chē)單車(chē)共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個(gè)共享單車(chē)企業(yè)在某個(gè)城市就“一天中一輛單車(chē)的平均成本(單位:元)與租用單車(chē)的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過(guò)程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見(jiàn)下表:

租用單車(chē)數(shù)量(千輛)

2

3

4

5

8

每天一輛車(chē)平均成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):

①完成下表(計(jì)算結(jié)果精確到0.1)(備注: ,稱(chēng)為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));

租用單車(chē)數(shù)量 (千輛)

2

3

4

5

8

每天一輛車(chē)平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較的大小,判斷哪個(gè)模型擬合效果更好.

(2)這個(gè)公司在該城市投放共享單車(chē)后,受到廣大市民的熱烈歡迎,共享單車(chē)常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車(chē)一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬(wàn)輛時(shí),該公司平均一輛單車(chē)一天能收入10元,6元收入的概率分別為0.4,0.6.問(wèn)該公司應(yīng)該投放8千輛還是1萬(wàn)輛能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車(chē)的平均成本,利潤(rùn)=收入-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,其中b是常數(shù).
(1)若y=f(x)是奇函數(shù),求b的值;
(2)求證:y=f(x)是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)解不等式f(x)< ;
(2)求函數(shù)f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)求的單調(diào)區(qū)間;

(2)若為整數(shù),且當(dāng)時(shí), 恒成立,其中的導(dǎo)函數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f (x)= 的定義域?yàn)锳,m>0,函數(shù)g(x)=4 x1(0<x≤m)的值域?yàn)锽.
(1)當(dāng)m=1時(shí),求 (R A)∩B;
(2)是否存在實(shí)數(shù)m,使得A=B?若存在,求出m的值; 若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是(
A.y=|x|
B.y=3﹣x
C.y=
D.y=﹣x2+4

查看答案和解析>>

同步練習(xí)冊(cè)答案