(本小題滿分13分)
已知橢圓的兩焦點在軸上, 且兩焦點與短軸的一個頂點的連線構成斜邊長為2的等腰直角三角形。
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的動直線交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q ?若存在求出點Q的坐標;若不存在,請說明理由。
(Ⅰ).(Ⅱ)存在定點Q,則Q的坐標只可能為。
【解析】
試題分析:(Ⅰ)由橢圓兩焦點與短軸的一個端點的連線構成等腰直角三角形,
又斜邊長為2,即 故,
橢圓方程為. ……………(4分)
(Ⅱ)當與x軸平行時,以AB為直徑的圓的方程為;
當與y軸平行時,以AB為直徑的圓的方程為
,故若存在定點Q,則Q的坐標只可能為(6分)
下證明為所求:
若直線斜率不存在,上述已經(jīng)證明.設直線,
,
, ……………………(8分)
……(10分)
,即以AB為直徑的圓恒過點. ………(13分)
注: 此題直接設,得到關于的恒成立問題也可求解.
考點:本題主要考查橢圓標準方程,直線與橢圓的位置關系。
點評:中檔題,曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題求橢圓、標準方程時,主要運用了橢圓的幾何性質。(II)小題中,運用平面向量的數(shù)量積,“化證為算”,達到證明目的。
科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調理科數(shù)學 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com