【題目】已知,,圓,點(diǎn),是圓上的動(dòng)點(diǎn),線段的垂直平分線交直線于點(diǎn),點(diǎn)的軌跡為曲線.

1)討論曲線的形狀,并求其方程;

2)若,且面積的最大值為,直線過(guò)點(diǎn)且不垂直于坐標(biāo)軸,與曲線交于,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

【答案】1)當(dāng)時(shí),曲線是橢圓,其方程為;當(dāng)時(shí)曲線是雙曲線,其方程為;(2)證明詳見(jiàn)解析,定點(diǎn)坐標(biāo).

【解析】

1)分點(diǎn)在圓內(nèi)和點(diǎn)在圓外兩種情況討論,兩者都可以利用圓錐曲線的定義得到相應(yīng)的曲線方程.

2)設(shè),,則直線軸交點(diǎn)的橫坐標(biāo)為,聯(lián)立直線方程和橢圓方程,消去后利用韋達(dá)定理化簡(jiǎn)后可得為定值,從而可證直線過(guò)定點(diǎn).

當(dāng)時(shí),點(diǎn)在圓內(nèi),,

故曲線是以為焦點(diǎn),以為長(zhǎng)軸長(zhǎng)的橢圓,其方程為.

當(dāng)時(shí),點(diǎn)在圓外,,

曲線是以為焦點(diǎn),以為實(shí)軸長(zhǎng)的雙曲線,其方程為.

綜上,當(dāng)時(shí),曲線是橢圓,其方程為;當(dāng)時(shí)曲線是雙曲線,其方程為;

2)由面積有最大值為知,曲線只可能是橢圓,

由橢圓幾何性質(zhì)知,當(dāng)位于短軸端點(diǎn)時(shí)其面積有最大值,因,

故其短半軸長(zhǎng)為,又因焦距為2,

故曲線的方程為.

設(shè),則

聯(lián)立,消去得:

,

直線

由橢圓的對(duì)稱性知,若直線過(guò)定點(diǎn),則該定點(diǎn)必在軸上,

故令得:,

所以直線過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)點(diǎn)的極坐標(biāo)為.

1)求曲線的極坐標(biāo)方程;

2)若過(guò)點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)參加項(xiàng)目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤(rùn)萬(wàn)元.根據(jù)現(xiàn)實(shí)的需要,從項(xiàng)目中調(diào)出人參與項(xiàng)目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤(rùn)萬(wàn)元(),項(xiàng)目余下的工人每人每年創(chuàng)造利圖需要提高

1)若要保證項(xiàng)目余下的工人創(chuàng)造的年總利潤(rùn)不低于原來(lái)名工人創(chuàng)造的年總利潤(rùn),則最多調(diào)出多少人參加項(xiàng)目從事售后服務(wù)工作?

2)在(1)的條件下,當(dāng)從項(xiàng)目調(diào)出的人數(shù)不能超過(guò)總?cè)藬?shù)的時(shí),才能使得項(xiàng)目中留崗工人創(chuàng)造的年總利潤(rùn)始終不低于調(diào)出的工人所創(chuàng)造的年總利潤(rùn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)國(guó)家統(tǒng)計(jì)局發(fā)布的數(shù)據(jù),201911月全國(guó)(居民消費(fèi)價(jià)格指數(shù)),同比上漲,上漲的主要因素是豬肉價(jià)格的上漲,豬肉加上其他畜肉影響上漲3.27個(gè)百分點(diǎn).下圖是201911一籃子商品權(quán)重,根據(jù)該圖,下列四個(gè)結(jié)論正確的有______

一籃子商品中權(quán)重最大的是居住

一籃子商品中吃穿住所占權(quán)重超過(guò)

③豬肉在一籃子商品中權(quán)重為

④豬肉與其他禽肉在一籃子商品中權(quán)重約為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市勞動(dòng)部門(mén)堅(jiān)持就業(yè)優(yōu)先,釆取多項(xiàng)措施加快發(fā)展新興產(chǎn)業(yè),服務(wù)經(jīng)濟(jì),帶來(lái)大量就業(yè)崗位,據(jù)政府工作報(bào)告顯示,截至2018年末,全市城鎮(zhèn)新增就業(yè)21.9萬(wàn)人,創(chuàng)歷史新高.城鎮(zhèn)登記失業(yè)率為4.2%,比上年度下降0.73個(gè)百分點(diǎn),處于近20年來(lái)的最低水平.

1)現(xiàn)從該城鎮(zhèn)適齡人群中抽取100人,得到如下列聯(lián)表:

失業(yè)

就業(yè)

合計(jì)

3

62

65

2

33

35

合計(jì)

5

95

100

根據(jù)聯(lián)表判斷是否有99%的把握認(rèn)為失業(yè)與性別有關(guān)?

附:

0.050

0.010

0.001

3.841

6.635

10.828

2)調(diào)查顯示,新增就業(yè)人群中,新興業(yè)態(tài),民營(yíng)經(jīng)濟(jì),大型國(guó)企對(duì)就業(yè)支撐作用不斷增強(qiáng),其崗位比例為253,現(xiàn)要抽取一個(gè)樣本容量為50的樣本,則這三種崗位應(yīng)該各抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)離心率為 的橢圓 的左、右焦點(diǎn)為 , 點(diǎn)PE上一點(diǎn), , 內(nèi)切圓的半徑為 .

(1)E的方程;

(2)矩形ABCD的兩頂點(diǎn)C、D在直線,A、B在橢圓E,若矩形ABCD的周長(zhǎng)為 , 求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),曲線 .以為極點(diǎn), 軸的非負(fù)半軸為極軸,與直角坐標(biāo)系取相同的長(zhǎng)度單位,建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)射線)與曲線的異于極點(diǎn)的交點(diǎn)為,與曲線的交點(diǎn)為,求.

【答案】(1) 的極坐標(biāo)方程為 的極坐標(biāo)方程為;(2) .

【解析】試題分析:(1先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線,再根據(jù)將曲線極坐標(biāo)方程;2代人曲線的極坐標(biāo)方程,再根據(jù).

試題解析:1)曲線的參數(shù)方程為參數(shù))

可化為普通方程,

,可得曲線的極坐標(biāo)方程為,

曲線的極坐標(biāo)方程為.

2)射線)與曲線的交點(diǎn)的極徑為,

射線)與曲線的交點(diǎn)的極徑滿足,解得,

所以.

型】解答
結(jié)束】
23

【題目】設(shè)函數(shù)

(1)設(shè)的解集為,求集合;

(2)已知為(1)中集合中的最大整數(shù),且(其中,,為正實(shí)數(shù)),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】畢達(dá)哥拉斯樹(shù)是由畢達(dá)哥拉斯根據(jù)“勾股定理”所畫(huà)出來(lái)的一個(gè)可以無(wú)限重復(fù)的圖形,也叫“勾股樹(shù)”,其是由一個(gè)等腰直角三角形分別以它的每一條邊向外作正方形而得到.圖1所示是第1代“勾股樹(shù)”,重復(fù)圖1的作法,得到第2代“勾股樹(shù)”(如圖2),如此繼續(xù).若“勾股樹(shù)”上共得到8191個(gè)正方形,設(shè)初始正方形的邊長(zhǎng)為1,則最小正方形的邊長(zhǎng)為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形中,;如圖,將沿邊折起,連結(jié),使,求證:

1)平面平面;

2)若為棱上一點(diǎn),且與平面所成角的正弦值為,求二面角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案