(本題滿分12分)
設(shè)二次函數(shù),對(duì)任意實(shí)數(shù),有恒成立;數(shù)列滿足.
(1)求函數(shù)的解析式;
(2)試寫出一個(gè)區(qū)間,使得當(dāng)時(shí),且數(shù)列是遞增數(shù)列,并說明理由;
(3)已知,是否存在非零整數(shù),使得對(duì)任意,都有
恒成立,若存在,求之;若不存在,說明理由.
解:(1)由恒成立等價(jià)于恒成立 ……1分
從而得:,化簡(jiǎn)得,從而得,
所以, ………3分
(2)解:若數(shù)列是遞增數(shù)列,則即:
………5分[ZXX又當(dāng)時(shí),,
所以有且,所以數(shù)列是遞增數(shù)列。 …………7分
注:本題的區(qū)間也可以是、、、………,等無窮多個(gè).
(3)由(2)知,從而;
,
即; ………8分
令,則有且;
從而有,可得,所以數(shù)列是為首項(xiàng),公比為的等比數(shù)列,
從而得,即,
所以 , ……………………10分
所以,所以,
所以,
.………………………11分
即,所以,恒成立
(1) 當(dāng)為奇數(shù)時(shí),即恒成立,當(dāng)且僅當(dāng)時(shí),有最小值為。
(2) 當(dāng)為偶數(shù)時(shí),即恒成立,當(dāng)且僅當(dāng)時(shí),有最大值為。
所以,對(duì)任意,有。又非零整數(shù),…………………12分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com