【題目】設(shè)橢圓C的方程為O為坐標(biāo)原點,A為橢團的上頂點,為其右焦點,D是線段的中點,且.

1)求橢圓C的方程;

2)過坐標(biāo)原點且斜率為正數(shù)的直線交橢圓CP,Q兩點,分別作軸,軸,垂足分別為EF,連接,并延長交橢圓C于點M,N兩點.

(。┡袛的形狀;

(ⅱ)求四邊形面積的最大值.

【答案】(1)(2)(。為直角三角形(ⅱ)

【解析】

1)根據(jù)題意得到,在求出,得到橢圓標(biāo)準(zhǔn)方程;(2)(。┫仍O(shè)直線的方程,分別與橢圓方程聯(lián)立,得到點的坐標(biāo),從而表示出直線的斜率,得到,從而做出判斷;(ⅱ)先得到四邊形面積是面積的2倍,利用弦長公式得到,從而表示出的面積,再利用基本不等式得到其最大值,從而得到四邊形面積的最大值.

解:(1)設(shè)橢圓的半焦距為c.

由題意可得,D的中點,

,∴,

∴橢圓的方程為.

2)(1)設(shè)直線的方程為,且點P在第一象限,

聯(lián)立消去y

顯然,

.

又∵軸,∴,

,

∴直線的方程為,

聯(lián)立消去y,

,

.

,

,

,

為直角三角形.

(ⅱ)根據(jù)圖形的對稱性可知,四邊形面積是面積的2倍,

由(。┲為直角三角形,且,

.

,

.

,∵,∴,

,而上單調(diào)遞增,

所以,所以

即當(dāng)時,最大,此時的面積也達到最大,

由對稱性可知,

故當(dāng)時,最大,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)設(shè)的極值點,求實數(shù)的值,并求的單調(diào)區(qū)間:

(2)時,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國詩詞大會》亮點頗多,十場比賽每場都有一首特別設(shè)計的開場詩詞,在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.因為前四場播出后反響很好,所以節(jié)目組決定《將進酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外確定的兩首詩詞排在后六場,并要求《將進酒》與《望岳》相鄰,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰,且均不排在最后,則后六場開場詩詞的排法有( )

A. 144種 B. 48種 C. 36種 D. 72種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線的極坐標(biāo)方程為(常數(shù)),曲線的參數(shù)方程為為參數(shù)).

1)求曲線的直角坐標(biāo)方程和的普通方程;

2)若曲線,有兩個不同的公共點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》全稱《新編直指算法統(tǒng)宗》,是屮國古代數(shù)學(xué)名著,程大位著.書中有如下問題:“今有五人均銀四十兩,甲得十兩四錢,戊得五兩六錢.問:次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分104錢,戊分56錢,且相鄰兩項差相等,則乙丙丁各分幾兩幾錢?(注:1兩等于10錢)(

A.乙分8兩,丙分8兩,丁分8B.乙分82錢,丙分8兩,丁分78

C.乙分92錢,丙分8兩,丁分68D.乙分9兩,丙分8兩,丁分7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】初中數(shù)學(xué)靠練,高中數(shù)學(xué)靠悟”.總結(jié)反思自己已經(jīng)成為數(shù)學(xué)學(xué)習(xí)中不可或缺的一部分,為了了解總結(jié)反思對學(xué)生數(shù)學(xué)成績的影響,某校隨機抽取200名學(xué)生,抽到不善于總結(jié)反思的學(xué)生概率是0.6.

1)完成列聯(lián)表(應(yīng)適當(dāng)寫出計算過程);

2)試運用獨立性檢驗的思想方法分析是否有的把握認(rèn)為學(xué)生的學(xué)習(xí)成績與善于總結(jié)反思有關(guān).

統(tǒng)計數(shù)據(jù)如下表所示:

不善于總結(jié)反思

善于總結(jié)反思

合計

學(xué)習(xí)成績優(yōu)秀

40

學(xué)習(xí)成績一般

20

合計

200

參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中,分別為棱的中點.為面對角線上任一點,則下列說法正確的是(

A.平面內(nèi)存在直線與平行

B.平面截正方體所得截面面積為

C.直線所成角可能為60°

D.直線所成角可能為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線是由兩個定點和點的距離之積等于的所有點組成的,對于曲線,有下列四個結(jié)論:①曲線是軸對稱圖形;②曲線上所有的點都在單位圓內(nèi);③曲線是中心對稱圖形;④曲線上所有點的縱坐標(biāo).其中,所有正確結(jié)論的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點,且焦點為F,直線l與拋物線相交于A,B兩點.

⑴求拋物線C的方程,并求其準(zhǔn)線方程;

為坐標(biāo)原點.,證明直線l必過一定點,并求出該定點.

查看答案和解析>>

同步練習(xí)冊答案