【題目】已知拋物線的方程為,直線過定點,斜率為,為何值時,直線與拋物線

1)只有一個公共點;

2)有兩個公共點;

3)沒有公共點?

【答案】1,(2,(3

【解析】

首先設(shè)出直線方程,聯(lián)立直線方程與拋物線方程得到.

1)將直線與拋物線只有一個公共點,轉(zhuǎn)化為方程只有一個根,再討論,再利用判別式求解即可.

2)將直線與拋物線只有兩個公共點,轉(zhuǎn)化為方程只有兩個根,再利用判別式求解即可.

3)將直線與拋物線沒有公共點,轉(zhuǎn)化為方程無根,再利用判別式求解即可.

設(shè)直線的方程為:,即.

聯(lián)立

1)因為直線與拋物線只有一個公共點,

等價于方程只有一個根.

當(dāng)時,,符合題意.

當(dāng)時,,

整理得:,解得.

綜上可得:.

2)因為直線與拋物線有兩個公共點,

等價于方程只有兩個根.

所以,,

,解得.

3)因為直線與拋物線沒有公共點,

等價于方程無根.

所以,

,解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的右焦點,點上,且軸.

(1)求的方程;

(2)過的直線兩點,交直線于點.判定直線的斜率是否依次構(gòu)成等差數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù));以原點極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

⑴ 求曲線的普通方程與曲線的直角坐標(biāo)方程;

⑵ 試判斷曲線是否存在兩個交點,若存在求出兩交點間的距離;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a3=2,前3項和為S3.

(1)求{an}的通項公式;

(2)設(shè)等比數(shù)列{bn}滿足b1a1,b4a15,求{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著生活節(jié)奏的加快以及智能手機的普及,外賣點餐逐漸成為越來越多用戶的餐飲消費習(xí)慣,由此催生了一批外賣點餐平臺已知某外賣平臺的送餐費用與送餐距離有關(guān)(該平臺只給5千米范圍內(nèi)配送),為調(diào)査送餐員的送餐收入,現(xiàn)從該平臺隨機抽取80名點外賣的用戶進(jìn)行統(tǒng)計,按送餐距離分類統(tǒng)計結(jié)果如下表:

以這80名用戶送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率。

(1)若某送餐員一天送餐的總距離為120千米,試估計該送餐員一天的送餐份數(shù);(四舍五入精確到整數(shù))

(2)若該外賣平臺給送餐員的送餐費用與送餐距離有關(guān),規(guī)定2千米內(nèi)為短距離,每份3元,2千米到4千米為中距離,每份5元,超過4千米為遠(yuǎn)距離,每份10。

(i)X為送餐員送一份外賣的收入(單位:元),求X的分布列和數(shù)學(xué)期望;

(ii)若送餐員一天的目標(biāo)收入不低于180元,試估計一天至少要送多少份外賣?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù)),在以原點為極點,軸的非

負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過點且與直線平行的直線兩點,求點,兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù),,對任意的,總存在,使得,則稱函數(shù)具有性質(zhì)

(1)判斷函數(shù)是否具有性質(zhì),說明理由;

(2)若函數(shù)具有性質(zhì),求的值;

(3)若函數(shù))在實數(shù)集上具有性質(zhì),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

1)當(dāng)時,解不等式;

2)若函數(shù)的值域為,求實數(shù)a的取值范圍;

3)設(shè),若函數(shù)有且只有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣alnx+(a+1)x﹣(a>0).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)若f(x)≥﹣+ax+b恒成立,求a時,實數(shù)b的最大值.

查看答案和解析>>

同步練習(xí)冊答案