【題目】某小組有3名男生和2名女生,從中任選2名同學(xué)參加演講比賽,事件A表示“2名學(xué)生全不是男生”,事件B表示“2名學(xué)生全是男生”,事件C表示“2名學(xué)生中至少有一名是男生”,則下列結(jié)論中正確的是( )
A.A與B對(duì)立
B.A與C對(duì)立
C.B與C互斥
D.任何兩個(gè)事件均不互斥
【答案】B
【解析】解:某小組有3名男生和2名女生,從中任選2名同學(xué)參加演講比賽,
事件A表示“2名學(xué)生全不是男生”,事件B表示“2名學(xué)生全是男生”,事件C表示“2名學(xué)生中至少有一名是男生”,
∴A與B不能同時(shí)發(fā)生,但能同時(shí)不發(fā)生,故A與B是互斥但不對(duì)立事件,故A和D都錯(cuò)誤;
A與C不能同時(shí)發(fā)生,也不能同時(shí)不發(fā)生,故A與C是對(duì)立事件,故B正確;
B與C能同時(shí)發(fā)生,故B與C不是互斥事件,故C錯(cuò)誤.
故選:B.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用互斥事件與對(duì)立事件,掌握互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;(2)事件A不發(fā)生且事件B發(fā)生;(3)事件A與事件B同時(shí)不發(fā)生;而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;(1)事件A發(fā)生B不發(fā)生;(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用秦九韶算法計(jì)算多項(xiàng)式f(x)=2x6+3x5+5x3+6x2+7x+8在x=2時(shí)的值時(shí),V2的值為( )
A.2
B.19
C.14
D.33
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“x>0,x2+x>0”的否定是( )
A.x0>0,x02+x0>0
B.x0>0,x02+x0≤0
C.x>0,x2+x≤0
D.x≤0,x2+x>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題p:x0>1,lgx0>1,則¬p為( )
A.x0>1,lgx0≤1
B.x0>1,lgx0<1
C.x>1,lgx≤1
D.x>1,lgx<1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)正方體外接球球心的截面截正方體所得圖形可能為______.
①三角形 ②正方形 ③梯形 ④五邊形 ⑤六邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b都是實(shí)數(shù),那么“a2>b2”是“a>b>0”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com