ABC中,若AB邊的位置不變,長為b,CBA=2CAB,求頂點(diǎn)C的軌跡方程.

 

答案:
解析:

以點(diǎn)A為原點(diǎn),直線ABx軸,如圖2-1-3建立坐標(biāo)系,得A0,0B6,0),

設(shè)Cx,y).

∵∠CBA=2CAB

,                                                       

轉(zhuǎn)化為-=2                                                                  

化簡為 3x2y12x=0                                                                         

驗(yàn)證,當(dāng)y=0時(shí),x=4x=0,構(gòu)不成三角形.當(dāng)x4時(shí)CBA < CAB.刪去x≤4的值.

所求方程為  3x2y212x=0x4).

 


提示:

 

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,若
AB
AC
=
BA
BC
,則△ABC的形狀是(  )
A、直角三角形
B、正三角形
C、等腰三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若
AB
AC
=
AB
CB
=4
,則邊AB的長等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點(diǎn),已知
AM
=
c
、
AN
=
d
,試用
c
、
d
表示
AB
AD

(2)在△ABC中,若
AB
=
a
,
AC
=
b
若P,Q,S為線段BC的四等分點(diǎn),試證:
AP
+
AQ
+
AS
=
3
2
(
a
+
b
)
;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)結(jié)論:
①?x∈R,2x>x2
②“若x2<1,則-1<x<1”的逆否命題是“若-1<x<1,則x2≥1”;
③要得到y(tǒng)=cos2x的圖象,只需要將y=sin(2x+
π
4
)的圖象向左平移
π
8
個(gè)單位;
④在△ABC中,若
AB
CA
>0,則∠A為銳角;
⑤函數(shù)f(x)=sin(2x+
π
3
)在[0,
π
12
]上是增函數(shù),在[
π
12
,
π
2
]上是減函數(shù).
其中正確結(jié)論的序號(hào)是
③⑤
③⑤
.(填寫你認(rèn)為正確的所有結(jié)論序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)設(shè)
a
、
b
都是非零向量,則“
a
b
=±|
a
|•|
b
|
”是“
a
b
共線”的充要條件
(2)將函數(shù)y=sin(2x+
π
3
)的圖象向右平移
π
3
個(gè)單位,得到函數(shù)y=sin2x的圖象;
(3)在△ABC中,若AB=2,AC=3,∠ABC=
π
3
,則△ABC必為銳角三角形;
(4)在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個(gè)公共點(diǎn);
其中正確命題的序號(hào)是
(1)(3)
(1)(3)
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊答案