如圖,在矩形ABCD中,AB2BC3,沿BD將矩形ABCD折疊,連接AC,所得三棱錐A?BCD正視圖和俯視圖如圖,則三棱錐A?BCD側(cè)視圖的面積為(  )

A. B. C. D.

 

B

【解析】由正視圖及俯視圖可得,在三棱錐A?BCD中,平面ABD平面BCD,該幾何體的側(cè)視圖是腰長(zhǎng)為的等腰直角三角形,其面積為×2.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練17練習(xí)卷(解析版) 題型:填空題

某校開(kāi)展愛(ài)我海西、愛(ài)我家鄉(xiāng)攝影比賽,9位評(píng)委為參賽作品A給出的分?jǐn)?shù)如莖葉圖所示.記分員在去掉一個(gè)最高分和一個(gè)最低分后,算得平均分為91,復(fù)核員在復(fù)核時(shí),發(fā)現(xiàn)有一個(gè)數(shù)字(莖葉圖中的x)無(wú)法看清,若記分員計(jì)算無(wú)誤,則數(shù)字x應(yīng)該是________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練13練習(xí)卷(解析版) 題型:解答題

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).

(1)求證:平面PAC平面PBC;

(2)AB2,AC1,PA1,求二面角C?PB?A的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練12練習(xí)卷(解析版) 題型:選擇題

已知mn是兩條不同的直線,αβ是兩個(gè)不重合的平面,那么下面給出的條件中一定能推出mβ的是(  )

Aαβ,且m?α Bmn,且nβ

Cαβ,且mα Dmn,且nβ

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練11練習(xí)卷(解析版) 題型:填空題

一個(gè)半徑為2的球體經(jīng)過(guò)切割后,剩余部分幾何體的三視圖如圖所示,則該幾何體的表面積為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:填空題

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若 (nN*)是非零常數(shù),則稱該數(shù)列為和等比數(shù)列;若數(shù)列{cn}是首項(xiàng)為2,公差為d(d≠0)的等差數(shù)列,且數(shù)列{cn}和等比數(shù)列,則d________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:選擇題

數(shù)列{an}的通項(xiàng)公式an,若{an}n項(xiàng)和為24,則n( )

A25 B576 C624 D625

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:選擇題

已知過(guò)A(1,a),B(a,8)兩點(diǎn)的直線與直線2xy10平行,則a的值為(  )

A.-10 B17 C5 D2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷2練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)yAsin(ωxφ)m(A>0|φ|<)的最大值為4,最小值為0,兩個(gè)對(duì)稱軸間的最短距離為,直線x是其圖象的一條對(duì)稱軸,則符合條件的解析式是(  )

Ay4sin By=-2sin2

Cy=-2sin2 Dy2sin2

 

查看答案和解析>>

同步練習(xí)冊(cè)答案