【題目】北京大學(xué)從參加逐夢(mèng)計(jì)劃自主招生考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六組 , 后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問(wèn)題:

1)求分?jǐn)?shù)在內(nèi)的頻率;

2)估計(jì)本次考試成績(jī)的中位數(shù)(結(jié)果四舍五入,保留整數(shù));

3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有人在分?jǐn)?shù)段內(nèi)的概率.

【答案】(1)0.3;(2)123;(3) .

【解析】試題分析:1根據(jù)頻率分布直方圖的各小長(zhǎng)方形的面積之和為,可求出分?jǐn)?shù)在內(nèi)的頻率;2利用中位數(shù)的兩邊面積相等可估計(jì)本次考試成績(jī)的中位數(shù);(3計(jì)算出分?jǐn)?shù)段的人數(shù),用分層抽樣的方法在各分?jǐn)?shù)段內(nèi)抽取的人數(shù)組成樣本,列舉出從樣本中任取的事件個(gè)數(shù)以及從樣本中任取至多有人在分?jǐn)?shù)段內(nèi)的事件個(gè)數(shù),利用古典概型概率公式概率可得結(jié)果.

試題解析1)分?jǐn)?shù)在[120,130)內(nèi)的頻率為

1(0.10.150.150.250.05)10.70.3

2估計(jì)本次考試成績(jī)的中位數(shù)為

3)由題意,[110,120)分?jǐn)?shù)段的人數(shù)為60×0.159(人).

[120130)分?jǐn)?shù)段的人數(shù)為60×0.318(人).

∵用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,

∴需在[110,120)分?jǐn)?shù)段內(nèi)抽取2人,并分別記為m,n;

[120130)分?jǐn)?shù)段內(nèi)抽取4人,并分別記為a,bc,d;設(shè)從樣本中任取2人,至多有1人在分?jǐn)?shù)段[120,130)內(nèi)為事件A,則基本事件共有{m,n}{m,a},{m,d},{na},{n,d}{a,b},,{cd},共15個(gè).

則事件A包含的基本事件有{m,n}{m,a}{m,b},{m,c},{m,d}{n,a},{n,b}{n,c},{nd},共9個(gè).

PA)=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=

(1)若對(duì),f(x) 恒成立,求的取值范圍;

(2)已知常數(shù)aR,解關(guān)于x的不等式f(x) .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得=80, =20, =184, =720.

(1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線(xiàn)性回歸方程ybxa;

(2)判斷變量xy之間是正相關(guān)還是負(fù)相關(guān);

(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.

附:線(xiàn)性回歸方程ybxa中, ab,其中 為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—5:不等式選講

已知函數(shù)(x)=|2x-a|+ |x -1|.

(Ⅰ)當(dāng)a=3時(shí),求不等式(x)≥2的解集;

(Ⅱ)若(x)≥5-x對(duì)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)過(guò)橢圓的右焦點(diǎn)且與橢圓交于兩點(diǎn), 中點(diǎn), 的斜率為.

(1)求橢圓的方程;

(2)設(shè)是橢圓的動(dòng)弦,且其斜率為1,問(wèn)橢圓上是否存在定點(diǎn),使得直線(xiàn)的斜率滿(mǎn)足?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)yx+ln x在點(diǎn)(1,1)處的切線(xiàn)與曲線(xiàn)yax2+(a+2)x+1相切,則a________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)等比數(shù)列{an}(nN*),首項(xiàng)a13,前n項(xiàng)和為Sn,且S3a3、S5a5,S4a4成等差數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)數(shù)列{nan}的前n項(xiàng)和為Tn,若對(duì)任意正整數(shù)n,都有Tn[a,b],求ba的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形與梯形所在的平面互相垂直, , ,點(diǎn)是線(xiàn)段的中點(diǎn).

(1)求證: ;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐中, 平面,點(diǎn)是線(xiàn)段的中點(diǎn).

(1)如果,求證:平面平面;

(2)如果,求直線(xiàn)和平面所成的角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案