【題目】已知函數(shù).

(1)若函數(shù)在x=2處取得極值,求的極大值;

(2)若對(duì)成立,求實(shí)數(shù)a的取值范圍.

【答案】(1)極大值為;(2)

【解析】試題分析:(1)求導(dǎo),根據(jù)條件得,進(jìn)而檢驗(yàn)即可;

(2)據(jù)題意,得對(duì)恒成立,令,分情況,,時(shí),求最小值即可.

試題解析:

(1)∵,∴.

又∵函數(shù)處取得極值,

,解得.

當(dāng)時(shí),.

,則,∴,.

1

2

+

0

-

0

+

單調(diào)遞增

極大值

單調(diào)遞減

極小值

單調(diào)遞增

的極大值為.

(2)據(jù)題意,得對(duì)恒成立.

設(shè),則.

討論:

(i)當(dāng)時(shí),由得函數(shù)單調(diào)減區(qū)間為;由得函數(shù)單調(diào)增區(qū)間為.

,且.

,解得;

(ii)當(dāng)時(shí),由得函數(shù)單調(diào)減區(qū)間;由得函數(shù)單調(diào)增區(qū)間為,

,不合題意.

(iii)當(dāng)時(shí),,上單調(diào)遞增,

,不合題意.

(iv)當(dāng)時(shí),由得函數(shù)單調(diào)減區(qū)間為;由得函數(shù)單調(diào)增區(qū)間,,又,不合題意.

綜上,所求實(shí)數(shù)a的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面為直角梯形,,底面 的中點(diǎn).

(1)證明:平面平面;

(2)求夾角的余弦值;

(3)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在幾何體中,四邊形是邊長(zhǎng)為2的菱形,平面,平面, .

(1)當(dāng)長(zhǎng)為多少時(shí),平面平面?

(2)在(1)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù).

1)已知的解集為,求實(shí)數(shù)的值;

2)已知,設(shè)、是關(guān)于的方程的兩根,且,求實(shí)數(shù)的值;

3)已知滿足,且關(guān)于的方程的兩實(shí)數(shù)根分別在區(qū)間內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,AB=2AD,為DC的中點(diǎn),將△ADM沿AM折起使平面ADM⊥平面ABCM.

(1)當(dāng)AB=2時(shí),求三棱錐的體積;

(2)求證:BM⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市周年慶典,設(shè)置了一項(xiàng)互動(dòng)游戲如圖,一個(gè)圓形游戲轉(zhuǎn)盤被分成6個(gè)均勻的扇形區(qū)域.用力旋轉(zhuǎn)轉(zhuǎn)盤,轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),箭頭所指區(qū)域的數(shù)字就是每次游戲所得的分?jǐn)?shù)(箭頭指向兩個(gè)區(qū)域的邊界時(shí)重新轉(zhuǎn)動(dòng)),且箭頭指向每個(gè)區(qū)域的可能性都是相等的.要求每個(gè)家庭派一名兒童和一位成人先后各轉(zhuǎn)動(dòng)一次游戲轉(zhuǎn)盤,記為,若一個(gè)家庭總得分,假設(shè)兒童和成人的得分互不影響,且每個(gè)家庭只能參加一次活動(dòng),游戲規(guī)定:

①若,則該家庭可以獲得一等獎(jiǎng)一份;

②若,則該家庭可以獲得二等獎(jiǎng)一份;

,則該家庭可以獲得紀(jì)念獎(jiǎng)一份.

(1)求一個(gè)家庭獲得紀(jì)念獎(jiǎng)的概率;

(2)試比較同一個(gè)家庭獲得一等獎(jiǎng)和二等獎(jiǎng)概率的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中中,直線,圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求直線和圓的極坐標(biāo)方程;

(2)若直線與圓交于兩點(diǎn),且的面積是,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2018·郴州期末]已知三棱錐中,垂直平分,垂足為是面積為的等邊三角形,,平面,垂足為為線段的中點(diǎn).

(1)證明:平面;

(2)求與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)全集UR,集合,B{y|y2x,x1},C{x|2axa+1}

1)求AUB;

2)若CAB),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案