已知f(x)=
1
1+x
,g(x)=x2+2,若f(2)=2,則f[g(2)]=
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知條件先求出g(2)=4+2=6,再求f[g(2)]的值.
解答: 解:∵f(x)=
1
1+x
,g(x)=x2+2,f(2)=2,
∴g(2)=4+2=6,
∴f[g(2)]=f(6)=
1
1+6
=
1
7

故答案為:
1
7
點評:本題考查函數(shù)值的求法,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-
1
ax
,且atf(2t)+mf(t)≥0,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}:1,-2,-2,3,3,3,-4,-4,-4,-4,…,
k個
(-1)k-1k,…,(-1)k-1k
,即當(dāng)
(k-1)k
2
<n≤
k(k+1)
2
(k∈N+)時,an=(-1)k-1k,記Sn=a1+a2…+an(n∈N+),對于l∈N+,定義集合Pl={n|Sn是an的整數(shù)倍,n∈N+,且1≤n≤1}
(1)求集合P11中元素的個數(shù);  
(2)求集合P2000中元素的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,D為△ABC的邊BC中點,E在AC上且AE=3,EC=2,AD交BE于F,那么
BF
FE
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體S-ABC各棱長都為1,D、E分別為AB、SC的中點,則異面直線SD與BE所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-ax-1=0在區(qū)間[2,+∞)內(nèi)是增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列10、7、4…的第10項是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個橢圓的半焦距為2,離心率e=
1
2
,則該橢圓的短半軸長是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M,N為平面區(qū)域
3x-y-6≤0
x-y-2≥0
x≥0
內(nèi)的兩個動點,向量
a
=(1,3),則當(dāng)
MN
a
時,|
MN
|2的最大值是( 。
A、4B、8C、20D、40

查看答案和解析>>

同步練習(xí)冊答案