求多項(xiàng)式2x2-4xy+5y2-12y+13的最小值.
考點(diǎn):根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡(jiǎn)運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用完全平方公式,把多項(xiàng)式寫(xiě)出幾個(gè)完全平方式的形式,即可得出正確的答案.
解答: 解:∵2x2-4xy+5y2-12y+13
=(2x2-4xy+2y2)+(3y2-12y+12)+1
=2(x-y)2+3(y-2)2+1
當(dāng)x=y=2時(shí),上述多項(xiàng)式取得最小值1.
點(diǎn)評(píng):本題考查了求代數(shù)式的最值問(wèn)題,解題時(shí)應(yīng)根據(jù)代數(shù)式的特點(diǎn),把它寫(xiě)出幾個(gè)完全平方數(shù)的形式,從而得出答案,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某次象棋比賽的決賽在甲乙兩名旗手之間舉行,比賽采用積分制,比賽規(guī)則規(guī)定贏一局得2分,平一局得1分,輸一局得0分;比賽進(jìn)行五局,積分有超過(guò)5分者比賽結(jié)束,否則繼續(xù)進(jìn)行,根據(jù)以往經(jīng)驗(yàn),每局甲贏的概率為
1
2
,乙贏的概率為
1
3
,且每局比賽輸贏互不受影響.若甲第n局贏、平、輸?shù)牡梅址謩e記為an=2,an=1,an=0,n∈N*,1≤n≤5,令 Sn=a1+a2+…+an
(1)求S3=5的概率.
(2)求S5=7的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2013年9月20日是第25個(gè)全國(guó)愛(ài)牙日.某區(qū)衛(wèi)生部門(mén)成立了調(diào)查小組,調(diào)查“常吃零食與患齲齒的關(guān)系”,對(duì)該區(qū)六年級(jí)800名學(xué)生進(jìn)行檢查,按患齲齒和不患齲齒分類,得匯總數(shù)據(jù):不常吃零食且不患齲齒的學(xué)生有60名,常吃零食但不患齲齒的學(xué)生有100名,不常吃零食但患齲齒的學(xué)生有140名.
P(K2≥k00.0100.0050.001
k06.6357.87910.828
能否在犯錯(cuò)概率不超過(guò)0.001的前提下,認(rèn)為該區(qū)學(xué)生的常吃零食與患齲齒有關(guān)系?附:
k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(8,1)的直線與雙曲線x2-4y2=4相交于A、B兩點(diǎn),且P是線段AB的中點(diǎn),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ax+b2,a∈R,b∈R.
(Ⅰ)若a從集合{0,1,2,3,4}中任取一個(gè)元素,b從集合{0,1,2,3}中任取一個(gè)元素,求方程f(x)=0有兩個(gè)不相等實(shí)根的概率;
(Ⅱ)若a從區(qū)間[0,3]中任取一個(gè)數(shù),b從區(qū)間[0,4]中任取一個(gè)數(shù),求方程f(x)=0沒(méi)有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:Sn為數(shù)列{an}的前n項(xiàng)和,且2,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若an2=(
1
2
 bn,cn=
bn
an
,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在(x-y)10的展開(kāi)式中,求x7y3的系數(shù)與x3y7的系數(shù)之和;
(2)4位同學(xué)參加某種形式的競(jìng)賽,競(jìng)賽規(guī)則規(guī)定:每位同學(xué)必須從甲.乙兩道題中任選一題作答,選甲題答對(duì)得100分,答錯(cuò)得-100分;選乙題答對(duì)得90分,答錯(cuò)得-90分.若4位同學(xué)的總分為0,求這4位同學(xué)不同得分情況的種數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在海南省第二十四屆科技創(chuàng)新大賽活動(dòng)中,某同學(xué)為研究“網(wǎng)絡(luò)游戲?qū)Ξ?dāng)代青少年的影響”作了一次調(diào)查,共調(diào)查了50名同學(xué),其中男生26人,有8人不喜歡玩電腦游戲,而調(diào)查的女生中有9人喜歡玩電腦游戲.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)根據(jù)以上數(shù)據(jù),在犯錯(cuò)誤的概率不超過(guò)0.025的前提下,能否認(rèn)為“喜歡玩電腦游戲與性別有關(guān)系”?
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為
1
2
,且橢圓經(jīng)過(guò)點(diǎn)(0,
3
),
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在過(guò)點(diǎn)P(2,1)的直線l與橢圓C交于不同的兩點(diǎn)A,B滿足
PA
PB
=
5
4
,若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案