己知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列的前n項(xiàng)和,若Tn¨對(duì)恒成立,求實(shí)數(shù)的最小值.

(1)(2)

解析試題分析:(1)求等差數(shù)列通項(xiàng)公式基本方法為待定系數(shù)法,即求出首項(xiàng)與公差即可,將題中兩個(gè)條件:
前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列轉(zhuǎn)化為關(guān)于首項(xiàng)與公差的方程組
  解出即得,(2)本題先求數(shù)列的前n項(xiàng)和,這可利用裂
項(xiàng)相消法,得到 ,然后對(duì)恒成立問題進(jìn)行等價(jià)轉(zhuǎn)化,即分離
變量為對(duì)恒成立,所以,從而轉(zhuǎn)化為求對(duì)應(yīng)函數(shù)最值,因?yàn)?br />,所以
試題解析:(1)設(shè)公差為d.由已知得            3分
解得,所以            6分
(2),
            9分
對(duì)恒成立,即對(duì)恒成立

的最小值為                       12分
考點(diǎn):等差數(shù)列通項(xiàng),裂項(xiàng)相消求和,不等式恒成立

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和,又,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}滿足:an+1>an(n∈N*),a1=1,該數(shù)列的前三項(xiàng)分別加上1,1,3后順次成為等比數(shù)列{bn}的前三項(xiàng).
(1)分別求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)Tn(n∈N*),若Tn<c(c∈Z)恒成立,求c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}、{bn}、{cn}滿足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求證:{an}為等差數(shù)列的充分必要條件是{cn}為等差數(shù)列且bn≤bn+1(n=1,2,3,…).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}的首項(xiàng)為a,公差為d,且方程ax2-3x+2=0的解為1,d.
(1)求{an}的通項(xiàng)公式及前n項(xiàng)和公式;
(2)求數(shù)列{3n-1an}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知兩個(gè)等比數(shù)列{an},{bn},滿足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若數(shù)列{an}唯一,求a的值;
(2)是否存在兩個(gè)等比數(shù)列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不為0的等差數(shù)列?若存在,求{an},{bn}的通項(xiàng)公式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12,q=.
(1)求an與bn.
(2)證明:++…+<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列(常數(shù)),其前項(xiàng)和為 
(1)求數(shù)列的首項(xiàng),并判斷是否為等差數(shù)列,若是求其通項(xiàng)公式,不是,說明理由;
(2)令的前n項(xiàng)和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N*,都有+…+,記Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=3n+(-1)n-1λ·2an(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對(duì)任意n∈N*,都有bn+1>bn.

查看答案和解析>>

同步練習(xí)冊(cè)答案