分析 (1)推導(dǎo)出PD⊥AP,AB⊥PD,由此能證明平面PAB⊥平面PDC.
(2)取AD的中點(diǎn)O,連接OP,OF,PO⊥AD,以O(shè)為原點(diǎn),射線OA,OF,OP為x軸,y軸,z軸建立空間直角坐標(biāo)系O-xyz,由此利用向量法能求出在線段AB上存在點(diǎn)G(1,12,0)使得二面角C-PD-G的余弦值為13,AGAB=14.
解答 (本小題滿分12分)
證明:(1)∵AD=2,∴PA=PD=√2,
∴PA2+PD2=AD2∴PD⊥AP,
又∵平面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,
∴AB⊥平面PAD,又PD?平面PAD,∴AB⊥PD,
又∵AP∩AP=A,且AP、AB?平面PAB,
∴PD⊥平面PAB,
又PD?平面PDC,∴平面PAB⊥平面PDC…(6分)
解:(2)如圖,取AD的中點(diǎn)O,連接OP,OF,
∵PA=PD,∴PO⊥AD.
又側(cè)面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,
∴PO⊥平面ABCD,
而O,F(xiàn)分別為AD,BD的中點(diǎn),∴OF∥AB,
又ABCD是正方形,∴OF⊥AD,
以O(shè)為原點(diǎn),射線OA,OF,OP為x軸,y軸,z軸建立空間直角坐標(biāo)系O-xyz,
則有A(1,0,0),C(-1,2,0),F(xiàn)(0,1,0),D(-1,0,0),P(0,0,1),…(8分)
若在AB上存在點(diǎn)G,使得二面角C-PD-G的余弦值為13,連接PG、DG,
設(shè)G(1,a,0)(0≤a≤2),
則→DP=(1,0,1),→GD=(-2,-a,0),
由(2)知平面PDC的一個(gè)法向量為→PA=(1,0,-1),
設(shè)平面PGD的法向量為→n=(x,y,z).
則{→n•→DP=0→n•→GD=0,即{x+z=0−2x−ay=0,.
令y=-2,得→n=(a,-2,-a),…(10分)
∴|cos<→n,→PA>|=2a√2•√2a2+4=13,解得a=12,
∴a=12,此時(shí)AGAB=14,
∴在線段AB上存在點(diǎn)G(1,12,0)使得二面角C-PD-G的余弦值為13,AGAB=14.…(12分)
點(diǎn)評(píng) 本題考查面面垂直的證明,考查滿足條件的點(diǎn)的位置的判斷與求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)g(x)與u(x)的值域相同 | B. | 函數(shù)g(x)與u(x)的最小正周期相同 | ||
C. | 函數(shù)g(x)與u(x)的單調(diào)區(qū)間相同 | D. | 函數(shù)g(x)與u(x)奇偶性相同 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [kπ-\frac{π}{12},kπ+\frac{5π}{12}](k∈Z) | B. | [kπ+\frac{5π}{12},kπ+\frac{11π}{12}](k∈Z) | ||
C. | [kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈Z) | D. | [kπ+\frac{π}{6},kπ+\frac{2π}{3}](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2\sqrt{2} | B. | 3\sqrt{2} | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (\frac{1}{ln2}-2,\frac{1}{ln3}-\frac{4}{3}) | B. | (\frac{1}{ln2}-2,\frac{1}{ln3}-\frac{4}{3}] | C. | (\frac{1}{ln3}-\frac{4}{3},\frac{1}{2ln2}-1] | D. | (\frac{1}{ln3}-\frac{4}{3},\frac{1}{2ln2}-1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com