(2012•山西模擬)已知函數(shù)f(x)=x-1-alnx(a∈R).
(1)若曲線y=f(x)在x=1處的切線方程為3x-y=3,求實(shí)數(shù)a的值;
(2)若f(x)的值域?yàn)閇0,+∞),求a的值;
(3)若a<0,對(duì)任意x1,x2∈(0,1],且x1≠x2,恒有|f(x1)-f(x2)|<4|
1
x1
-
1
x2
|
,求實(shí)數(shù)a的取值范圍.
分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)f(x)在x=1處的導(dǎo)數(shù),從而求出切線的斜率,建立等式關(guān)系即可求出a的值;
(2)先若f(x)的值域?yàn)閇0,+∞),轉(zhuǎn)化為恒成立問題,再討論a的符號(hào)使f(x)≥0恒成立,求出a的值即可;
(3)設(shè)h(x)=f(x)+
4
x
=x-1-alnx+
4
x
,則|f(x1)-f(x2)|≤4|
1
x1
-
1
x2
|等價(jià)于函數(shù)h(x)在區(qū)間(0,1]上是減函數(shù)即使x2-ax-4≤0在(0,1]上恒成立,然后利用分離法將a分離出來(lái),從而求出a的范圍.
解答:解:(1)∵f'(x)=1-
a
x
,∴f'(1)=1-a
∴曲線y=f(x)在x=1處的切線的斜率為1-a
∵曲線y=f(x)在x=1處的切線的方程為3x-y-3=0,
∴1-a=3,解得a=-2.
(2)f'(x)=1-
a
x
=
x-a
x
,其中x>0
(i)當(dāng)a≤0時(shí),f'(x)>0恒成立,所以函數(shù)f(x)在(0,+∞)上是增函數(shù)
而f(1)=0,所以當(dāng)x∈(0,1)時(shí),f(x)<0,與f(x)≥0恒成立相矛盾
∴a≤0不滿足題意.
(ii)當(dāng)a>0時(shí),∵x>a時(shí),f'(x)>0,所以函數(shù)f(x)在(a,+∞)上是增函數(shù);
0<x<a時(shí),f'(x)<0,所以函數(shù)f(x)在(0,a)上是減函數(shù);
∴f(x)≥f(a)=a-a-alna
∵f(1)=0,所以當(dāng)a≠1時(shí),f(a)<f(1)=0,此時(shí)與f(x)≥0恒成立相矛盾
∴a=1
綜上所述,若f(x)的值域?yàn)閇0,+∞),則a=1;
(3)由(2)可知,
當(dāng)a<0時(shí),函數(shù)f(x)在(0,1]上是增函數(shù),又函數(shù)y=
1
x
在(0,1]上是減函數(shù)
不妨設(shè)0<x1≤x2≤1
則|f(x1)-f(x2)|=f(x2)-f(x1),
∴|f(x1)-f(x2)|≤4|
1
x1
-
1
x2
|即f(x2)+4×
1
x2
≤f(x1)+4×
1
x1

設(shè)h(x)=f(x)+
4
x
=x-1-alnx+
4
x
,
則|f(x1)-f(x2)|≤4|
1
x1
-
1
x2
|等價(jià)于函數(shù)h(x)在區(qū)間(0,1]上是減函數(shù)
因?yàn)閔'(x)=1-
a
x
-
4
x2
=
x2-ax-4
x2
,所以x2-ax-4≤0在(0,1]上恒成立,
即a≥x-
4
x
在(0,1]上恒成立,即a不小于y=x-
4
x
在(0,1]內(nèi)的最大值.
而函數(shù)y=x-
4
x
在(0,1]是增函數(shù),所以y=x-
4
x
的最大值為-3
所以a≥-3,又a<0,所以a∈[-3,0).
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及恒成立問題的應(yīng)用,同時(shí)考查了計(jì)算能力,轉(zhuǎn)化與化歸的思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•山西模擬)若0<x<1,則2x,(
1
2
)x,(0.2)x
之間的大小關(guān)系為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•山西模擬)已知lga+lgb=0(a>0,b>0且a≠1,b≠1),則函數(shù)f(x)=ax與函數(shù)g(x)=-logbx的圖象可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•山西模擬)設(shè)函數(shù)f(x)=x-
1
2
,則函數(shù)y=f(4x-3)的定義域是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•山西模擬)已知函數(shù)f(x)=-mx3+nx2的圖象在點(diǎn)(-1,2)處的切線恰好與直線3x+y=0平行,若f(x)在區(qū)間[t,t+1]上單調(diào)遞減,則實(shí)數(shù)t的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•山西模擬)設(shè)f(x)=lg(10x+1)+ax是偶函數(shù),g(x)=
4x-b
2x
是奇函數(shù),那么a+b的值為
1
2
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案