【題目】已知的圖像可由的圖像平移得到,對(duì)于任意的實(shí)數(shù),均有成立,且存在實(shí)數(shù),使得為奇函數(shù).
(Ⅰ)求函數(shù)的解析式.
(Ⅱ)函數(shù)的圖像與直線有兩個(gè)不同的交點(diǎn), ,若,,求實(shí)數(shù)的取值范圍.
【答案】(1) ;(2) 實(shí)數(shù)的取值范圍是.
【解析】
分析:(Ⅰ)根據(jù)題意的圖像關(guān)系對(duì)稱,關(guān)于對(duì)稱,
可設(shè),
又根據(jù)存在實(shí)數(shù),使得為奇函數(shù),可求函數(shù)的解析式.
(Ⅱ)根據(jù)題意的圖像與有兩個(gè)不同交點(diǎn),
則有兩個(gè)解,由,解得:或,
∵,,,直線恒過定點(diǎn)和連線的斜率為,∴.符合
詳解:
(Ⅰ)的圖像關(guān)系對(duì)稱,關(guān)于對(duì)稱,
∴可設(shè)
,
又存在實(shí)數(shù),使得為奇函數(shù),
∴不含常數(shù)項(xiàng).
故.
(Ⅱ)∵的圖像與有兩個(gè)不同交點(diǎn),
∴有兩個(gè)解,
∴,
解得:或,
∵,,,和連線的斜率為,
∴.
綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】半徑小于的圓經(jīng)過點(diǎn),圓心在直線上,并且與直線相交所得的弦長(zhǎng)為.
()求圓的方程.
()已知點(diǎn),動(dòng)點(diǎn)到圓的切線長(zhǎng)等于到的距離,求的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)幾何體,它的下面是一個(gè)圓柱,上面是一個(gè)圓錐,并且圓錐的底面與圓柱的上底面重合,圓柱的底面直徑為3 cm,高為4 cm,圓錐的高為3 cm,畫出此幾何體的直觀圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是臨江公園內(nèi)一個(gè)等腰三角形形狀的小湖(假設(shè)湖岸是筆直的),其中兩腰米,.為了給市民營造良好的休閑環(huán)境,公園管理處決定在湖岸,上分別取點(diǎn),(異于線段端點(diǎn)),在湖上修建一條筆直的水上觀光通道(寬度不計(jì)),使得三角形和四邊形的周長(zhǎng)相等.
(1)若水上觀光通道的端點(diǎn)為線段的三等分點(diǎn)(靠近點(diǎn)),求此時(shí)水上觀光通道的長(zhǎng)度;
(2)當(dāng)為多長(zhǎng)時(shí),觀光通道的長(zhǎng)度最短?并求出其最短長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解用戶對(duì)其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機(jī)調(diào)查了40個(gè)用戶,根據(jù)用戶對(duì)產(chǎn)品的滿意度評(píng)分,得到A地區(qū)用戶滿意度評(píng)分的頻率分布直方圖和B地區(qū)用戶滿意度評(píng)分的頻數(shù)分布表。
A地區(qū)用戶滿意度評(píng)分的頻率分布直方圖
B地區(qū)用戶滿意度評(píng)分的頻數(shù)分布表
(Ⅰ)在答題卡上作出B地區(qū)用戶滿意度評(píng)分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評(píng)分的平均值及分散程度(不要求計(jì)算出具體值,給出結(jié)論即可);
(Ⅱ)根據(jù)用戶滿意度評(píng)分,將用戶的滿意度從低到高分為三個(gè)等級(jí):
滿意度評(píng)分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級(jí) | 不滿意 | 滿意 | 非常滿意 |
估計(jì)哪個(gè)地區(qū)的滿意度等級(jí)為不滿意的概率大?說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列, 是等比數(shù)列,且 .
(1)數(shù)列和的通項(xiàng)公式;
(2)設(shè),求數(shù)列前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺(tái)ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求證:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點(diǎn),且圓心在x軸上。
(1)求直線PQ的方程;
(2)圓C的方程;
(3)若直線l∥PQ,且l與圓C交于點(diǎn)A,B,且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , , , 分別為, 的中點(diǎn),點(diǎn)在線段上.
(1)求證: 平面;
(2)如果三棱錐的體積為,求點(diǎn)到面的距離.
【答案】(1)證明見解析;(2).
【解析】試題分析:
(1)在平行四邊形中,得出,進(jìn)而得到,證得底面,得出,進(jìn)而證得平面.
(2)由到面的距離為,所以面, 為中點(diǎn),即可求解的值.
試題解析:
證明:(1)在平行四邊形中,因?yàn)?/span>, ,
所以,由, 分別為, 的中點(diǎn),得,所以.
側(cè)面底面,且, 底面.
又因?yàn)?/span>底面,所以.
又因?yàn)?/span>, 平面, 平面,
所以平面.
解:(2)到面的距離為1,所以面, 為中點(diǎn), .
【題型】解答題
【結(jié)束】
21
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)求函數(shù)的極值;
(3)若函數(shù)在區(qū)間上是增函數(shù),試確定的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com