7.從4名男生,3名女生中選出三名代表,至少有一名女生的不同選法共有31種.

分析 根據(jù)題意,分析可得:至少有一名女生包括3種情況,①、有1名女生、2名男生,②、有2名女生、1名男生,③、3名全是女生,由組合數(shù)公式可得每種情況的選法數(shù)目,由分類計數(shù)原理計算可得答案.

解答 解:根據(jù)題意,要求至少有一名女生,則可以分3種情況討論:
①、選出的3名代表中有1名女生、2名男生,有C42C31=18種情況,
②、選出的3名代表中有2名女生、1名男生,有C41C32=12種情況,
③、選出的3名代表全部為女生,有C33=1種情況,
則一共有18+12+1=31種不同選法;
故答案為:31.

點評 本題考查排列、組合的應(yīng)用,注意“至少有一名女生”的條件,進(jìn)而分情況討論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知向量$\overrightarrow a=(2,-1),\overrightarrow b=(0,1)$,則$|\overrightarrow a+2\overrightarrow b|$=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)y=f(x)為奇函數(shù),則它的圖象必經(jīng)過點( 。
A.(0,0)B.(-a,-f(a))C.(a,f(-a))D.(-a,-f(-a))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若無窮等差數(shù)列{an}的首項a1<0,公差d>0,{an}的前n項和為Sn,則以下結(jié)論中一定正確的是(  )
A.Sn單調(diào)遞增B.Sn單調(diào)遞減C.Sn有最小值D.Sn有最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某市為增強(qiáng)市民的環(huán)境保護(hù)意識,某市組織了一批年齡在[20,45]歲的志愿者為市民展開宣傳活動,現(xiàn)從這批志愿者中隨機(jī)抽取100名按年齡分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],各組人數(shù)的頻率分布直方圖如圖所示,現(xiàn)從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加宣傳活動.
(Ⅰ)應(yīng)從第3,4,5組各抽取多少名志愿者?
(Ⅱ)在這6名志愿者中隨機(jī)抽取2名擔(dān)任宣傳后動負(fù)責(zé)人,求第3組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.{an}是各項均為正數(shù)的等差數(shù)列,{bn}是等比數(shù)列,已知$\frac{a_1}{b_1}$=$\frac{a_2}{b_2}$=1,$\frac{a_3}{b_3}$=$\frac{8}{9}$,那么$\frac{a_4}{b_4}$=( 。
A.$\frac{20}{27}$B.$\frac{16}{27}$C.$\frac{4}{9}$D.$\frac{20}{27}$或$\frac{16}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)是定義在實數(shù)集上的函數(shù),當(dāng)x∈(0,1]時,f(x)=2x,且對任意x都有f(x+1)=$\frac{1-2f(x)}{2-f(x)}$,則f(log25)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{5}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.0B.$\frac{π}{2}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某商場經(jīng)營一批進(jìn)價是30元/臺的小商品,在市場試驗中發(fā)現(xiàn),此商品的銷售單價x(x取整數(shù))元與日銷售量y臺之間有如表關(guān)系:
x35404550
y56412811
(1)畫出散點圖,并判斷y與x是否具有線性相關(guān)關(guān)系?
(2)求日銷售量y對銷售單價x的線性回歸方程;
(3)設(shè)經(jīng)營此商品的日銷售利潤為P元,根據(jù)(1)寫出P關(guān)于x的函數(shù)關(guān)系式,并預(yù)測當(dāng)銷售單價x為多少元時,才能獲得最大日銷售利潤.($\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}$)

查看答案和解析>>

同步練習(xí)冊答案