如圖,正方體ABCD-A1B1C1D1中,E、F分別是A1A,C1D1的中點(diǎn),G為正方形BCC1B1的中心,則四邊形AEFG在該正方體的各個(gè)面的投影不可能是( 。
A、
B、
C、
D、
考點(diǎn):簡(jiǎn)單空間圖形的三視圖
專(zhuān)題:空間位置關(guān)系與距離
分析:根據(jù)題意,結(jié)合圖形,分析選項(xiàng)A、B、C、D是否為三視圖中的一個(gè),從而得出答案.
解答: 解:根據(jù)題意,得;
選項(xiàng)A是俯視圖,是四邊形AEFG在底面ABCD上的投影,∴A是可能的;
選項(xiàng)B是正視圖,是四邊形AEFG在側(cè)面CDD1C1上的投影,∴B是可能的;
選項(xiàng)D是側(cè)視圖,是四邊形AEFG在側(cè)面ADD1A1上的投影,∴D是可能的;
選項(xiàng)C不是正視圖、也不是側(cè)視圖、也不是俯視圖,∴C是不可能的.
故選:C.
點(diǎn)評(píng):本題考查了空間幾何體的三視圖的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱臺(tái)ABCD-A1B1C1D1中,DD1⊥平面ABCD,底面ABCD是平行四邊形,AB=AD=2A1B1,∠BAD=60°
(1)證明:BB1⊥AC;
(2)若AB=2,且二面角A1-AB-C大小為60°,連接AC,BD,設(shè)交點(diǎn)為O,連接B1O.求三棱錐B1-ABO外接球的體積.
(球體體積公式:V=
4
3
πR3,R是球半徑)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|y=lg(x+1)},B={y=|y=1-ex,x∈R},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x+y=-1,且x,y都是負(fù)實(shí)數(shù),則xy+
1
xy
有(  )
A、最小值2
B、最大值-2
C、最小值
17
4
D、最大值-
17
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義方程f(x)=f′(x)的實(shí)數(shù)根x0叫做函數(shù)f(x)的“萌點(diǎn)”,如果函數(shù)g(x)=x,h(x)=ln(x+1),φ(x)=cosx(x∈(
π
2
,π)的“萌點(diǎn)”分別為a、b、c,則a、b、c的大小關(guān)系是
 
(從小到大排列)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若變量x、y滿足條件
2x-y+2≥0
x-2y+1≤0
x+y-5<0
,則z=2x-y的取值范圍是( 。
A、[-2,4]
B、(-2,4]
C、[-2,4)
D、(-2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,記角A、B、C所對(duì)邊的邊長(zhǎng)分別為a、b、c,設(shè)S是△ABC的面積,若2SsinA<(
BA
BC
)sinB,則下列結(jié)論中:
①a2<b2+c2;                  ②c2>a2+b2;
③cosBcosC>sinBsinC;       ④△ABC是鈍角三角形.
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式組
5x+3y≤15
y≤x+1
x-5y≤3
表示的平面區(qū)域的面積為( 。
A、7B、5C、3D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若△PAB是圓C:(x-2)2+(y-2)2=4的內(nèi)接三角形,且PA=PB,∠APB=120°,則線段AB的中點(diǎn)的軌跡方程為(  )
A、(x-2)2+(y-2)2=1
B、(x-2)2+(y-2)2=2
C、(x-2)2+(y-2)2=3
D、x2+y2=1

查看答案和解析>>

同步練習(xí)冊(cè)答案