【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測(cè)試.

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計(jì)

甲班

乙班

30

總計(jì)

60

(Ⅰ)根據(jù)題目完成列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為環(huán)保知識(shí)成績(jī)優(yōu)秀與學(xué)生的文理分類(lèi)有關(guān).

(Ⅱ)現(xiàn)已知, 三人獲得優(yōu)秀的概率分別為, , ,設(shè)隨機(jī)變量表示, , 三人中獲得優(yōu)秀的人數(shù),求的分布列及期望

附: ,

0.100

0.050

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

【答案】()詳見(jiàn)解析;(

【解析】試題分析:(1)古典概型的概率問(wèn)題,關(guān)鍵是正確找出基本事件總數(shù)和所求事件包含的基本事件數(shù),然后利用古典概型的概率計(jì)算公式計(jì)算;(2)當(dāng)基本事件總數(shù)較少時(shí),用列舉法把所有的基本事件一一列舉出來(lái),要做到不重不漏,有時(shí)可借助列表,樹(shù)狀圖列舉,當(dāng)基本事件總數(shù)較多時(shí),注意去分排列與組合;求隨機(jī)變量的分布列的主要步驟:一是明確隨機(jī)變量的取值,并確定隨機(jī)變量服從何種概率分布;二是求每一個(gè)隨機(jī)變量取值的概率,三是列成表格;(3)求出分布列后注意運(yùn)用分布列的兩條性質(zhì)檢驗(yàn)所求的分布列是否正確;(4)求解離散隨機(jī)變量分布列和方差,首先要理解問(wèn)題的關(guān)鍵,其次要準(zhǔn)確無(wú)誤的找出隨機(jī)變量的所有可能值,計(jì)算出相對(duì)應(yīng)的概率,寫(xiě)成隨機(jī)變量的分布列,正確運(yùn)用均值、方差公式進(jìn)行計(jì)算.

試題解析:(2×2列聯(lián)表如下


優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

40

20

60

乙班

20

30

50

總計(jì)

60

50

110

算得,

,

所以有99%的把握認(rèn)為學(xué)生的環(huán)保知識(shí)成績(jī)與文理分科有關(guān) 5

)設(shè)成績(jī)優(yōu)秀分別記為事件,則

隨機(jī)變量的取值為0,1,2,3 6

,

10

所以隨機(jī)變量的分布列為:

X

0

1

2

3

P





E(X) =0×+1×+2×+3× = 12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且 =2csinA
(1)確定角C的大;
(2)若c= ,且△ABC的面積為 ,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)高三年級(jí)從甲、乙兩個(gè)班級(jí)各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖,其中甲班學(xué)生成績(jī)的平均分是85,乙班學(xué)生成績(jī)的中位數(shù)是89.

(1)求的值;

(2)計(jì)算乙班7位學(xué)生成績(jī)的方差.

(3)從成績(jī)?cè)?0分以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,求乙班至少有一名學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于回歸分析的說(shuō)法中錯(cuò)誤的是( )

A. 回歸直線一定過(guò)樣本中心

B. 殘差圖中殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明選用的模型比較合適

C. 兩個(gè)模型中殘差平方和越小的模型擬合的效果越好

D. 甲、乙兩個(gè)模型的分別約為0.98和0.80,則模型乙的擬合效果更好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知A= ,b2﹣a2= c2
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,且,求 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,兩焦點(diǎn)分別為,右頂點(diǎn)為 .

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)過(guò)定點(diǎn)的直線與雙曲線的左支有兩個(gè)交點(diǎn),與橢圓交于兩點(diǎn),與圓交于兩點(diǎn),若的面積為 ,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, 是兩條不同直線, , 是兩個(gè)不同平面,則下列命題正確的是( )

A. 垂直于同一平面,則平行

B. 平行于同一平面,則平行

C. , 不平行,則在內(nèi)不存在與平行的直線

D. , 不平行,則不可能垂直于同一平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線: 為給定的正常數(shù), 為參數(shù), )構(gòu)成的集合為,給出下列命題:

①當(dāng)時(shí), 中直線的斜率為

中的所有直線可覆蓋整個(gè)坐標(biāo)平面.

③當(dāng)時(shí),存在某個(gè)定點(diǎn),該定點(diǎn)到中的所有直線的距離均相等;

④當(dāng)時(shí), 中的兩條平行直線間的距離的最小值為;

其中正確的是__________(寫(xiě)出所有正確命題的編號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案