5.在△ABC中,已知a,b,c分別是角A,B,C的對(duì)邊,$cosA=\frac{4}{5}$,c=2,△ABC的面積S=6,則a的值為(  )
A.$6\sqrt{2}$B.$4\sqrt{5}$C.$2\sqrt{34}$D.72

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sinA,進(jìn)而利用三角形面積公式可求b,根據(jù)余弦定理可求a值.

解答 解:∵$cosA=\frac{4}{5}$,可得:sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$,
又∵c=2,△ABC的面積S=6=$\frac{1}{2}$bcsinA=$\frac{1}{2}×b×2×\frac{3}{5}$,
∴解得:b=10,
∴由余弦定理可得:a=$\sqrt{^{2}+{c}^{2}-2bccosA}$=$\sqrt{100+4-2×10×2×\frac{4}{5}}$=6$\sqrt{2}$.
故選:A.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,三角形面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)f(x)=$\left\{\begin{array}{l}{x-2,(x≥10)}\\{f(x+6),(1≤x<10)}\end{array}\right.$則使f(x)=11成立的實(shí)數(shù)x的集合為{1,7,13}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.空間中四點(diǎn)可確定的平面有(  )
A.1個(gè)B.4個(gè)C.1個(gè)或4個(gè)D.0個(gè)或1個(gè)或4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.定義$\frac{n}{{{p_1}+{p_2}+{p_3}+…+{p_n}}}$為n個(gè)實(shí)數(shù)P1.P2.….Pn的“均倒數(shù)”.已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為$\frac{1}{2n+a}$,前n項(xiàng)和Sn≥S5恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-18,-16)B.[-18,-16]C.(-22,-18)D.(-20,-18)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.甲、乙、丙三名學(xué)生計(jì)劃利用今年“十一”長(zhǎng)假?gòu)奈鍌(gè)旅游景點(diǎn)(五個(gè)景點(diǎn)分別是:大理、麗江、西雙版納、峨眉山、九寨溝)中每人彼此獨(dú)立地選三個(gè)景點(diǎn)游玩,其中甲同學(xué)必選峨眉山,不選九寨溝,另從其余景點(diǎn)中隨機(jī)任選兩個(gè);乙、丙兩名同學(xué)從五個(gè)景點(diǎn)中隨機(jī)任選三個(gè).
(1)求甲同學(xué)選中麗江景點(diǎn)且乙同學(xué)未選中麗江景點(diǎn)的概率;
(2)用X表示甲、乙、丙選中麗江景點(diǎn)的人數(shù)之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的半焦距為c,若直線y=2x與橢圓的一個(gè)交點(diǎn)的橫坐標(biāo)恰好為c,則橢圓的離心率為( 。
A.$1-\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}-\frac{1}{2}$C.$\sqrt{2}-1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)相同,F(xiàn)1,F(xiàn)2為橢圓的左、右焦點(diǎn).M為橢圓上任意一點(diǎn),△MF1F2面積的最大值為1.
(1)求橢圓C的方程;
(2)直線l:y=kx+m(m≠0)交橢圓C于A,B兩點(diǎn).
①若x軸上任意一點(diǎn)到直線AF2與BF2距離相等,求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
若直線l的斜率是直線OA,OB斜率的等比中項(xiàng),求△AOB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿(mǎn)足a2=3,a4-2a3=9,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(n+1)•log3an+1,數(shù)列$\left\{{\frac{1}{b_n}}\right\}$前n項(xiàng)和$T_n^{\;}$,在(1)的條件下,證明不等式Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.交通擁堵指數(shù)是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通擁堵指數(shù)為T(mén),其范圍為[0,10],分別有五個(gè)級(jí)別;T∈[0,2]暢通;T∈[2,4]基本暢通;T∈[4,6]輕度擁堵;T∈[6,8]中度擁堵;T∈[8,10]嚴(yán)重?fù)矶拢砀叻鍟r(shí)段(T≥2),從某市交能指揮中心選取了市區(qū)20個(gè)交能路段,依據(jù)其交能擁堵指數(shù)數(shù)據(jù)繪制的直方圖如圖所示,用分層抽樣的方法從交通指數(shù)在[4,6],[6,8],[8,10]的路段中共抽取6個(gè)中段,則中度擁堵的路段應(yīng)抽取3個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案