已知直線l:y=kx,圓C:x2+y2-2x-2y+1=0,直線l交圓于P、Q兩點(diǎn),點(diǎn)M(0,b)滿足MP⊥MQ.
(I)當(dāng)b=1時,求k的值;
(II)若k>3時,求b的取值范圍.
【答案】分析:(1)當(dāng)b=1時,代入到圓方程可發(fā)現(xiàn)點(diǎn)M(0,1)在圓上.又MP⊥MQ,所以P、Q比在圓直徑上,即可得圓心一定在直線l上,代入即可得到答案.
(2)先設(shè)P(x1,y1),Q(x2,y2),聯(lián)立方程組可得到兩根之和、兩根之積的關(guān)系式,再根據(jù)MP⊥MQ,即,可得x1x2+(y1-b)(y2-b)=0,代入可得答案.
解答:解:(1)∵C:x2+y2-2x-2y+1=0∴b=1時,點(diǎn)M(0,1)在圓上.又MP⊥MQ,圓心(1,1)在直線直線l:y=kx上,故k=1
(2)設(shè)P(x1,y1),Q(x2,y2).
聯(lián)立方程組,⇒(1+k2)x2-2(1+k)x+1=0,
∵M(jìn)P⊥MQ∴,即x1x2+(y1-b)(y2-b)=0.
又y1=kx1,y2=kx2,∴(1+k2)x1x2-kb(x1+x2)+b2=0,

當(dāng)b=0時,此式不成立,
從而
又∵k>3,令t=k-1>2,∴
令函數(shù),當(dāng)t>2時,,g(t)>5,從而
解此不等式,可得
點(diǎn)評:本題主要考查直線和圓的方程的有關(guān)問題.一般思路將直線方程和圓方程聯(lián)立消去y,得到兩根之和、兩根之積,再代入有關(guān)關(guān)系式即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=kx+k+1,拋物線C:y2=4x,定點(diǎn)M(1,1).
(I)當(dāng)直線l經(jīng)過拋物線焦點(diǎn)F時,求點(diǎn)M關(guān)于直線l的對稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N是否在拋物線C上;
(II)當(dāng)k(k≠0)變化且直線l與拋物線C有公共點(diǎn)時,設(shè)點(diǎn)P(a,1)關(guān)于直線l的對稱點(diǎn)為Q(x0,y0),求x0關(guān)于k的函數(shù)關(guān)系式x0=f(k);若P與M重合時,求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=kx+1與橢圓
x2
2
+y2=1交于M、N兩點(diǎn),且|MN|=
4
2
3
.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知圓M:(x+1)2+y2=8及定點(diǎn)N(1,0),點(diǎn)P是圓M上一動點(diǎn),點(diǎn)Q為PN的中點(diǎn),PM上一點(diǎn)G滿足
GQ
NP
=0

(1)求點(diǎn)G的軌跡C的方程;
(2)已知直線l:y=kx+m與曲線C交于A、B兩點(diǎn),E(0,1),是否存在直線l,使得點(diǎn)N恰為△ABE的垂心?若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=kx+b是橢圓C:
x24
+y2=1
的一條切線,F(xiàn)1,F(xiàn)2為左右焦點(diǎn).
(1)過F1,F(xiàn)2作l的垂線,垂足分別為M,N,求|F1M|•|F2M|的值;
(2)若直線l與x軸、y軸分別交于A,B兩點(diǎn),求|AB|的最小值,并求此時直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=kx-1與雙曲線C:x2-y2=4
(1)如果l與C只有一個公共點(diǎn),求k的值;
(2)如果l與C的左右兩支分別相交于A(x1,y1),B(x2,y2)兩點(diǎn),且|x1-x2|=2
5
,求k的值.

查看答案和解析>>

同步練習(xí)冊答案