分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′(1)=0,求出m的值即可;
(2)求出函數(shù)的導(dǎo)數(shù),根據(jù)m的范圍,解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(3)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論m的范圍確定函數(shù)的單調(diào)性,從而得到m的范圍即可.
解答 解:(1)f(x)=3x-2mx2-3ln(x+1)的定義域是(-1,+∞),
f′(x)=3-4mx-$\frac{3}{x+1}$,f′(1)=3-4m-$\frac{3}{2}$=0,解得:m=$\frac{3}{8}$;
(2)f′(x)=3-4mx-$\frac{3}{x+1}$=$\frac{-4{mx}^{2}+(3-4m)x}{x+1}$,
∵0<m<$\frac{3}{4}$,∴$\frac{3-4m}{4m}$>0,
令f′(x)<0,解得:x>$\frac{3-4m}{4m}$或x<0,
令f′(x)>0,解得:0<x<$\frac{3-4m}{4m}$,
故f(x)在(-1,0)遞減,在(0,$\frac{3-4m}{4m}$)遞增,在($\frac{3-4m}{4m}$,+∞)遞減;
(3)f′(x)=3-4mx-$\frac{3}{x+1}$=$\frac{-4{mx}^{2}+(3-4m)x}{x+1}$,
由(2)得:m>0時(shí),顯然不合題意,
m=0時(shí),f′(x)=$\frac{3x}{x+1}$,f(x)在[0,+∞)遞增,
f(x)的最小值是f(0)=0,符合題意,
m<0時(shí),f′(x)>0,f(x)在[0,+∞)遞增,
f(x)的最小值是f(0)=0,符合題意,
故m≤0.
點(diǎn)評(píng) 本題考查了切線方程問(wèn)題,考查函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 34π | B. | $\frac{80π}{3}$ | C. | $\frac{91}{3}π$ | D. | 114π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n≤2014? | B. | n≤2015? | C. | n>2014? | D. | n>2015? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com