已知全集U={1,2,3,4,5},集合A={1,2,3},B={2,3,5},則∁U(A∩B)=(  )
A、{1,4,5}
B、{1,2,3}
C、{3,4}
D、{4}
考點:交、并、補集的混合運算
專題:集合
分析:直接利用補集與交集的運算法則求解即可.
解答: 解:∵集合A={1,2,3},B={2,3,5},
∴A∩B={2,3},
由全集U={1,2,3,4,5},
∴∁UA∩B)={1,4,5}.
故選:A.
點評:本題考查了交、并、補集的混合運算,是基礎(chǔ)知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條平行直線l1
3
x-y+1=0與l2
3
-y+3=0.
(1)若直線m經(jīng)過點(
3
,4),且被l1、l2所截得的線段長為2,求直線m的方程;
(2)若直線n與l1、l2都垂直,且與坐標軸構(gòu)成的三角形的面積是2
3
,求直線n的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sin(2x+
π
6
),sinx),
n
=(1,sinx),f(x)=
m
n
-
1
2

(Ⅰ)求函數(shù)f(x)的解析式和最小正周期.
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z滿足(2-i)z=3+i則z=( 。
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“對任意實數(shù)x,都有x2-2x+2>0”的否定是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是正項數(shù)列{an}的前n項和且n∈N*,Sn=
1
4
an2+
1
2
an-
3
4
,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
36
-
y2
9
=1的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校為了了解新的一輪數(shù)改墨水有效性的“認可度”,在全校師生(可認為很多人)進行了“認可度”的問卷調(diào)查,現(xiàn)隨機抽查50名師生,對他們的“認可度”的問卷調(diào)查,現(xiàn)隨機抽查50名師生,對他們的“認可度”統(tǒng)計分析得如圖:
(1)求這50名師生的“認可度”的平均值(每一區(qū)間取中點值計算);
(2)求從這50名師生中任取一人的“認可度”的分數(shù)在60(含)分以上的概率;
(3)以這50名師生的“認可度”來估計全校師生總體“認可度”的評價,若從中隨機抽取4人的“認可度”,用ξ表示抽到的“認可度”分數(shù)在60(含)分以上的人數(shù),求ξ的分布列與整數(shù)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn滿足4Sn=an2+2an
(1)求a1的值;
(2)求{an}的通項公式;
(3)求證:
4
a1a2
+
4
a2a3
+…+
4
anan+1
<2
,n∈N*

查看答案和解析>>

同步練習(xí)冊答案