已知等差數(shù)列{an}前三項的和為-3,前三項的積為8.
(1) 求等差數(shù)列{an}的通項公式;
(2) 若數(shù)列{an}單調(diào)遞增,求數(shù)列{an}的前n項和.
(1) an=-3n+5,或an=3n-7.(2) .
解析試題分析:本題有等差數(shù)列的通項公式入手,只要解決和d兩個量問題即可解決,所以需要找到兩個關(guān)系,列出兩個方程即可,條件中恰有前三項和與前三項積兩個條件,因此可以列出兩個方程.
解:(1)設(shè)等差數(shù)列{an}的公差為d,則,a3=a1+2d.
由題意得
解得或
所以由等差數(shù)列通項公式可得
an=2-3(n-1)=-3n+5,或an=-4+3(n-1)=3n-7.
故an=-3n+5,或an=3n-7.
(2)由數(shù)列{an}單調(diào)遞增得:an=3n-7.
數(shù)列{an}的前n項和 .
考點:1.等差數(shù)列的基本公式2.?dāng)?shù)列的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列滿足,令.
(1)試判斷數(shù)列是否為等差數(shù)列?并說明理由;
(2)若,求前項的和;
(3)是否存在使得三數(shù)成等比數(shù)列?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的前n項和為Sn,且a2=1,S11=33.
(1)求{an}的通項公式;
(2)設(shè),求證:數(shù)列{bn}是等比數(shù)列,并求其前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項和為,且,數(shù)列為等差數(shù)列,且,.
(1)求數(shù)列的通項公式;
(2)若對任意的,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
在等差數(shù)列中,已知公差,是與的等比中項.
(1)求數(shù)列的通項公式;
(2)設(shè),記,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的首項,且對任意都有(其中為常數(shù)).
(1)若數(shù)列為等差數(shù)列,且,求的通項公式.
(2)若數(shù)列是等比數(shù)列,且,從數(shù)列中任意取出相鄰的三項,均能按某種順序排成等差數(shù)列,求的前項和成立的的取值的集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com