(2013•嘉定區(qū)一模)若雙曲線x2-
y2
k
=1
的焦點到漸近線的距離為2
2
,則實數(shù)k的值是
8
8
分析:先分別求雙曲線的漸近線方程,焦點坐標,再利用焦點到漸近線的距離為2
2
,可求實數(shù)k的值
解答:解:雙曲線的漸近線方程為y=±
k
x
;焦點坐標是
1+k
,0)

由焦點到漸近線的距離為2
2
,不妨
?
k
×
1+k
?
1+k
=
k
=2
2
.解得k=8.
故答案為8.
點評:本題主要考查雙曲線的幾何形狀,考查解方程,考查學生分析解決問題的能力
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)一模)書架上有3本不同的數(shù)學書,2本不同的語文書,2本不同的英語書,將它們任意地排成一排,則左邊3本都是數(shù)學書的概率為
1
35
1
35
(結果用分數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)一模)如圖所示的算法框圖,若輸出S的值是90,那么在判斷框(1)處應填寫的條件是
k≤8
k≤8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)一模)如圖,在平面直角坐標系xOy中,橢圓
x2
a2
+
y2
b2
=1(a>b>0)被圍于由4條直線x=±a,y=±b所圍成的矩形ABCD內,任取橢圓上一點P,若
OP
=m•
OA
+n•
OB
(m、n∈R),則m、n滿足的一個等式是
m2+n2=
1
2
m2+n2=
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)一模)設等差數(shù)列{an}的前n項和為Sn,且a5+a13=34,S3=9.數(shù)列{bn}的前n項和為Tn,滿足Tn=1-bn
(1)求數(shù)列{an}的通項公式;
(2)寫出一個正整數(shù)m,使得
1
am+9
是數(shù)列{bn}的項;
(3)設數(shù)列{cn}的通項公式為cn=
an
an+t
,問:是否存在正整數(shù)t和k(k≥3),使得c1,c2,ck成等差數(shù)列?若存在,請求出所有符合條件的有序整數(shù)對(t,k);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案