已知雙曲線的中心在原點,對稱軸為坐標軸,一條漸近線方程為,右焦點,雙曲線的實軸為為雙曲線上一點(不同于),直線,分別與直線交于兩點
(1)求雙曲線的方程;
(2)是否為定值,若為定值,求出該值;若不為定值,說明理由。
(1);(2)為定值0

試題分析:(1)
(2)

因為三點共線
,同理

   

點評:本題主要考查雙曲線的標準方程和性質、數(shù)量積的應用等基礎知識,考查曲線和方程的關系等解析幾何的基本思想方法
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

求下列各曲線的標準方程
(Ⅰ)實軸長為12,離心率為,焦點在x軸上的橢圓;
(Ⅱ)拋物線的焦點是雙曲線的左頂點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓的離心率為,則雙曲線的離心率為
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩個焦點分別為,離心率。
(1)求橢圓方程;
(2)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M、N,且線段MN中點的橫坐標為–,求直線l傾斜角的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線C:被直線l:截得的弦長為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知, 是橢圓的兩個焦點,若滿足的點M總在橢圓的內部,則橢圓離心率的取值范圍是(    )
A.(0, 1)B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線所圍成的封閉圖形的面積為,曲線的內切圓半徑為.記為以曲線與坐標軸的交點為頂點的橢圓.
(1)求橢圓的標準方程;
(2)設是過橢圓中心的任意弦,是線段的垂直平分線.上異于橢圓中心的點.
(i)若為坐標原點),當點在橢圓上運動時,求點的軌跡方程;
(ii)若與橢圓的交點,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(文)已知橢圓的一個焦點為,點在橢圓上,點滿足(其中為坐標原點), 過點作一斜率為的直線交橢圓于、兩點(其中點在軸上方,點在軸下方) .

(1)求橢圓的方程;
(2)若,求的面積;
(3)設點為點關于軸的對稱點,判斷的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列方程的曲線關于y軸對稱的是(  )
A.x2-x+y2=1B.x2y+xy2=1
C.x2-y2=1 D.x-y="1"

查看答案和解析>>

同步練習冊答案