△ABC的三個內角A、B、C的對邊的長分別為a、b、c,有下列兩個條件:①a、b、c成等差數(shù)列;②a、b、c成等比數(shù)列,現(xiàn)給出三個結論:(1);(2);(3)。
請你選取給定的兩個條件中的一個條件為條件,三個結論中的兩個為結論,組建一個你認為正確的命題,并證明之。
(I)組建的命題為:已知_______________________________________________
求證:①__________________________________________
          ②__________________________________________
(II)證明:
解:(Ⅰ)命題一:△ABC中,若a、b、c成等差數(shù)列,求證:(1);(2);
命題二:△ABC中,若a、b、c成等差數(shù)列,求證:(1); (2);
命題三:△ABC中,若a、b、c成等差數(shù)列,求證:(1); (2);
命題四:△ABC中,若a、b、c成等比數(shù)列,求證:(1); (2)
(答案不唯一)
(Ⅱ)下面給出命題一、二、三的證明:
(1)∵a、b、c成等差數(shù)列,
∴2b=a+c,∴,
 ∴,
且B∈(0,),
;
(2)
     ;
(3),

,
,
。
下面給出命題四的證明:
(4)∵a、b、c成等比數(shù)列,
∴b2=a+c,
,
,
。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a,b,c分別是△ABC的三個內角A,B,C所對的邊,若a=1,b=
3
,A+C=2B
,則sinC=( 。
A、0B、2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的三個內角A、B、C的對邊分別是a,b,c,給出下列命題:
①若sinBcosC>-cosBsinC,則△ABC一定是鈍角三角形;
②若sin2A+sin2B=sin2C,則△ABC一定是直角三角形;
③若bcosA=acosB,則△ABC為等腰三角形;
④在△ABC中,若A>B,則sinA>sinB;
其中正確命題的序號是
②③④
②③④
.(注:把你認為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個內角A,B,C的對邊分別為a,b,c,且a,b,c成等比數(shù)列
(1)若sinC=2sinA,求cosB的值;
(2)求角B的最大值.并判斷此時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c分別為△ABC的三個內角A,B,C的對邊,
m
=(-
3
,sinA),
n
=(cosA,1)
,且
m
n

(Ⅰ)求角A的大;
(Ⅱ)若a=2,△ABC的面積為
3
,求b,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c分別是△ABC的三個內角A,B,C所對的邊,若a=1,b=
3
,B=60°,則sinC=
1
1

查看答案和解析>>

同步練習冊答案