如圖,已知橢圓C:+y2=1,A、B是四條直線x=±2,y=±1所圍成的兩個(gè)頂點(diǎn).
(1)設(shè)P是橢圓C上任意一點(diǎn),若,求證:動(dòng)點(diǎn)Q(m,n)在定圓上運(yùn)動(dòng),并求出定圓的方程;
(2)若M、N是橢圓C上兩上動(dòng)點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
寫(xiě)出符合下列條件的曲線的標(biāo)準(zhǔn)方程
與雙曲線有共同的漸近線且過(guò)點(diǎn)A(2,-3)求雙曲線標(biāo)準(zhǔn)方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓C: (a>b>0)上任一點(diǎn)P到兩個(gè)焦點(diǎn)的距離的和為2,P與橢圓長(zhǎng)軸兩頂點(diǎn)連線的斜率之積為-.設(shè)直線l過(guò)橢圓C的右焦點(diǎn)F,交橢圓C于兩點(diǎn)A(x1,y1),B(x2,y2).
(1)若 (O為坐標(biāo)原點(diǎn)),求|y1-y2|的值;
(2)當(dāng)直線l與兩坐標(biāo)軸都不垂直時(shí),在x軸上是否總存在點(diǎn)Q,使得直線QA,QB的傾斜角互為補(bǔ)角?若存在,求出點(diǎn)Q坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=-x3+x2,g(x)=aln x,a∈R.
(1)若對(duì)任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范圍;
(2)設(shè)F(x)=若P是曲線y=F(x)上異于原點(diǎn)O的任意一點(diǎn),在曲線y=F(x)上總存在另一點(diǎn)Q,使得△POQ中的∠POQ為鈍角,且PQ的中點(diǎn)在y軸上,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在2014年3月15日,某超市對(duì)某種商品的銷售量及其售價(jià)進(jìn)行調(diào)查分析,發(fā)現(xiàn)售價(jià)x元和銷售量y件之間的一組數(shù)據(jù)如下表所示:
售價(jià)x | 9 | 9.5 | 10 | 10.5 | 11 |
銷售量y | 11 | 10 | 8 | 6 | 5 |
由散點(diǎn)圖可知,銷售量y與售價(jià)x之間有較好的線性相關(guān)關(guān)系,其線性回歸方程是:
y= -3.2x+a,則a=( )
A. -24 B. 35.6 C. 40.5 D. 40
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),則a+b+c的取值范圍為( )
A.() B.() C.(,12) D.(6,l2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,一個(gè)空間幾何體的正視圖和左視圖都是邊長(zhǎng)為的正方形,俯視圖
是一個(gè)直徑為的圓,那么這個(gè)幾何體的側(cè)面積為
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com